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TESTS OF NEW w-N SUPERCONVERGENT DISPERSION RELATIONS*
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(Received 7 June 1967)

A new type of superconvergent sum rules for x-N scattering amplitudes has been de-
rived and compared with the experiments.

ImC' '(v) =-,'(v' —p, )"'[v (v)-o+(v)].

Then, let us set

F(v)=e' '(v -p ) C (v), (2)

where p is the pion mass and P is an arbitrary

In this note we propose a new set of disper-
sion sum rules for pion-nucleon scattering.
%"e find that they are reasonably well satisfied,
thus giving one more evidence of the internal
consistency of the dispersion relation.

Our sum rules are essentially superconver-
gent dispersion relations, with only one essen-
tial difference in that they contain integrals
of both the real part and the imaginary part
of the scattering amplitude. To begin, let us
consider the forward pion-nucleon scattering
amplitude C' '(v) =A' '(v)+ vB ' '(v). The no-
tation is standard, ' e.g. , ImC' '(v) is related
to the total scattering cross sections of w+P

by the formula

constant satisfying the condition

1 & P & —,[1+o. (0)]
P

(4)

[n (0) being the value of p-meson Regge tra-
p

jectory np(t) at i=0]. We shall choose the cuts
of (v -p. ) ~ to run from ~ to p and from -p
to -~, and normalize the function (v -p )
such that it assumes a real number on the right-
hand cut in the upper-half complex v plane.
In this way F(v) is a meromorphic function of
v, with branch cuts stretching over ~ & v) p,

and -a& ( v ( -p, and with poles at v= +vII = +p. /
2m, where m is the nucleon mass. The addi-
tional factor e~~' has been so chosen that ImF (v)
= 0 in the real interval —p, & v & j[L, except for
the pole contribution at v=+v&. If we assume
the Regge behavior for C' '(v) when v is asymp-
totic, we can find that F(v) —v ~ (v-~) with
6 = 2P-op(0) & 1, in the light of Eq. (3). From
this we have a superconvergent dispersion re-
lation' for F(v):

J d v ImF (v+ ie) = 0.

Since C' '(v) is a crossing-odd function of v,

this can moreover be rewritten as

dv

2 2P (cos(n p) ImC' '(v) + sin(7T p) ReC' '(v)) =-
(v -p )

2 2P''
2m (p, —v )

(5)

When p- 1-0, Eq. (5) reduces to the ordinary dispersion relation

ReC' '(p, ) = ——g', ,+ i dv, —,ImC' '(v).I p, -v 7t v —p

Similarly, let us consider another new function

G(v) =e (v p) [C (v-)-(v/p)C (V)],
nyi 2 2-y ( ) (-)

where y is another arbitrary real number, satisfying

1&@&2.

By the same token we obtain one more superconvergent dispersion relation

J dvImG(v+i e) =0,

(8)
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which in turn gives

dv g' mv

"p (~-p)2 2r cos(sy) ImC' '(v) + sin(my) ReC' '(v) ——ReC' '(p)
2m (p, —v )

2 2y'
B

(10)

When y-1+ 0, this equation reduces again to the ordinary dispersion sum rule Eq. (6), while as y- —,-0, it gives the following relation essentially equivalent to the one originally derived by Gilbert
some years ago:

Imc' '(v)~ p, t 2p ~~ dv —
t

lim . . .,„,— = —g', --, „„-- —,, „„,ReC' '(v)- —ReC' '(p)
v- p. +0

Table I. Test of Eq. (5) in the conte. In the right-
hand side we used f2/4m= (p, /2m)2g2/4m=0. 081.

Left-hand side Right-hand side

1.00
0.98
0.94
0.90
0.86
0.84
0.82
0.80

3.2
3.2
3.2
3.2
3.3
3.3
3.4
3.5

3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2

Table II. Test of Eq. (10) in the context. Notations
same as in Table I.

Left-hand side Right-hand side

1.50
1.46
1.40
1.34
1.28
1.22
1.16
1.10
1.04
1.00

3.0
3.0
3.1
3.1
3.2
3.2
3.2
3.2
3.2
3.2

3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2

In the following we shall test our sum rules
Eqs. (5) and (10). The final results are sum-
marized in Tables I and II. In the evaluation
of C' '(v), we used the scattering length ap-
proximation, '~ i.e., we retain only the rela-
tion k cot6 = 1/a and keep only the S wave, for
the incident pion momentum less than 0.02 GeV/
c. The adopted scattering lengths4 are a, = 0.178

' and as= —0.107 p, '. [In this connection,
the oM values of a, = 0.171 p. ' and a, = -0.088

' given by Hamilton and Woolcock' yield a

worse fit for the sum rule Eq. (10).] From 0.02
to 8.00 GeV/c, both ImC' '(v) and ReC' '(v)

are supplied by HOhler and Strauss. Their
ReC' '(v)'s have been evaluated from the or-
dinary dispersion relation, and in most cas-
es are consistent with experimental values.
For the region from 8 to 24 GeV/c, Lindenbaum's
new data' are used. From 24 GeV/c up to in-
finity, the Regge-pole model may be used.
However, even up to 24 GeV/c the assumption
that only p trajectory is exchanged is not so
satisfactory for the actual experiment (Linden-
baum found a fit with n&(0) = O.V, a bit larger),
as well as for the sum rule Eq. (5), although
the contributions are not so large. As a con-
sequence, we still use Lindenbaum's semiex-
perimental formula' to extrapolate to infinity.

As we see from Tables I and II, the agree-
ment is in general satisfactory except for P
=0.80 in Eq. (5) and y= 1.50 in Eq. (10), where
both sides of the equations differ nearly 10%%uo

from each other. It is likely that these errors
are due to our still-imperfect knowledge of
ReC' '(v). Actually, Gilberts had tried to de-
termine the scattering lengths from Eq. (6)
(which gives a, -a, ) and from Eq. (11) [which,
combined with Eq. (6), gives a, +2as]. Although
Eq. (11) is less dependent on the high-energy
behavior of C' '(v), the integral has an appre-
ciable contribution in the region v= p, where
the accruacy of the present ReC' '(v) is by
no means good enough to offer a better deter-
mination. We hope that the as-yet-inaccurate
data on the real part of the scattering ampli-
tude may be remedied in the future.

*Work supported in part by the U. S. Atomic Energy
Commission.
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A distinction is drawn between the divergence of the canonical commutator for com-
posite fieMs and the condition Z = 0 for equivalence of an elementary field theory to a
composite theory.

Fried and Jin' have given a short but rigor-
ous proof of Zc = 0 (Zc being the composite-
field renormalization constant) as a necessary
condition for composite fields. They evaluat-
ed the vacuum expectation value of the canon-
ical equal-times commutator of the composite
field constructed from the local product of ele-
mentary fields and normalized by the vacuum
to composite-particle matrix element being
unity, apart from kinematic factors. The con-
dition I/Zc = ~ then results from the basic di-
vergences of the underlying elementary field
theory. Conventional discussion of the Z = 0
rule for the equivalence of an elementary par-
ticle to a corresponding composite particle
disregards divergence problems. ' We endeav-
or to clarify the situation, and show how Z = 0
still follows in a nondivergent theory, where
it is possible that Z~ g 0.

Let y(x) be an elementary field (renormal-
ized; only renormalized quantities are consid-
ered here) governed by the field ec(uation

Z(CI+ p, ') jo(x) = Z5 p.'y(x)-z, GJ(x).

Z(x) is independent of cp(x). If Ip& is the one-
particle state of mass p, the normalization is

(ol9(0) Ip&(2po)"'=(oi9 (o) ip&(2P0)'"=1, (2)

p (x) =(Z G/Z5p')J(x).

In the limit Z -0 we expect y(x) - y (x), where
yc(x) is a composite field with no independent
degrees of freedom. Both y and q~ are local
scalar fields and their propagators satisfy the
usual Lehmann representation, with poles of
unit residue at p'. From (1) and (3), the re-

lation between them is

Z and Zdp' are independent, ~ so~

(k') = A (k') + I/Z5l '. (5)

In a nondivergent theory with Z6 p,
' finite and

(k'), - 1/Z k',
C

the right-hand side of (5) is asymptotically a
constant, and therefore obviously corresponds
to Z =0 in AF'(k') on the left-hand side. Only
if Z()y, ' diverges do A~'(k')Z 0=A~ '(k') and
the divergence of I/Zc, which Fried and Jin
considered, prove that Z =0.

In general, Z and Z are different. The spe-
cial case in Ref. 1 was given by considering
the composite field

p, (x) =:p'(x):/&,

Z6p,
) =(O) q'(0) lp&(2P, )"2 11m

0
Z~G'

taking J(x) =:y'(x):.
From (4) it is easy to show that

(k') =A (k')Z(k'-l '+()l '), 11(k'), (8)

where we have used A~'(k') = LZ(k'- pm+ () pm)

-II(k')] '. From (8), whether or not Z is 0,
we have

lim k2II(k').
1 1

Zbp' '

A '(k') =A '(k'), 1

5, (k'- p') (4)Z() Z() p'

192


