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We describe an expansion method for calcu-
lating scattering phase shifts which avoids the
difficulties of the variational methods of Hul-
then' and Kohn. ' Demkov and Shepelenkos have
pointed out the algebraic source of these dif-
ficulties, and they have shown how the Kohn
and Hulthen methods implicitly eliminate an
equation to restore consistency. These meth-
ods have also been examined elsewhere. 4~'

A third variational method, due to Schwinger, ~

appears to be more difficult to use, although
Schwartz' has indicated a way to apply Schwing-
er's method for potential scattering, and Lipp-
mann' has recently converted the Schwinger
principle into a form similar to those of Hul-
th6n and Kohn. Other approaches are those
of Schlessinger and Schwartz, ' and of Spruch,
Rosenberg, Hahn, and O' Malley. '- The form-
er proceeds by analytic continuation from bound-
state regions, while the latter simplifies cal-
culations for compound targets.

Ours is an approach which seeks to use to
advantage the singularity properties that ad-
versely affect the Kohn method. As it stands,
it is applicable to compound targets, and it
appears extendable to multichannel processes.
Consider a single-channel process with Hamil-
tonian H and asymptotic solutions g, (E) and

g, (E) at energy E The stati. onary-state wave
function '4 is then written 4'=a@,+a,g, +4,
thereby defining C, and the Schrodinger equa-
tion yields

a (H-E)q (E)+a (H E)( (E)+(H E-)4 =0. (1)-

We assume IJ to be such that at large distanc-
es the incident particle sees a short-range po-
tential, so that (H-E)(„(H—E)(„(H E)4, —

and 4 are all quadratically integrable. The
solution of Eq. (1) for 4 then should be expect-
ed to be smoothly approximable with bound-
state functions.

Introduce a set of bound-state functions y;,
i = 1, ~ ~,n, to be used for the approximation
of 4. The role of these functions is most clear-
ly seen if they are transformed to a basis on
which IJ is diagonal within the subspace spanned
by the y-. That is, we construct and solve the
finite matrix equation (H —X5) c = 0, where P,&

=(y;Hy&) and S»=(gory&). The solution 5&, cor-

responding to eigenvalue A. &, defines a func-
tion p p =Q pcp~gp.

Now, suppose that the functions y& are cap-
able of giving a good representation of 4 at
an energy E. Then Eq. (1) should be nearly
satisfied. The condition we shall impose here
is that the left side of Eq. (1) have no compo-
nent in the subspace spanned by the q&. Be-
cause of the bounded nature of all terms of Eq.
(1), this condition should produce convergence
to a well-defined solution as the y& approach
a complete set of quadratically integrabe func-
tions.

The essence of our method is to recognize
that the above-described condition is easy to
impose if E is chosen to be an eigenvalue X&
of the finite probelm which we used to define
the y &. For E = ~&, the coefficient of y &

on
the left of Eq. (1) is

~H-& f41(& ))+~2&@ ~H-&„~42(& )).

Equating this to 0, we obtain the ratio a,/a„
from which we may deduce a phase shift. The
whole idea is to use our knowledge of the be-
havior of IJ on the bound-state functions to cre-
ate a set of conditions optimum for determin-
ing a,/a, .

In practice, the method involves four steps:
(1) Choose a set of y; and diagonalize H; (2) pick
an eigenvalue appropriate to a scattering so-
lution; (3) define g, and g, at this energy; and

(4) solve for a,/a, . By varying the set of y;,
normally through parametric adjustments, al-
most any eigenvalue can be reached. Often
a single set of y; will yield several eigenval-
ues.

The method yields results which are not changed
by the addition to P, or gz of any linear combi-
nation of the X;. This means that whenever
the y; are actually sufficient to define a good
approximate 4, the phase shifts will not depend
upon arbitrariness in the choice of g, or P2.
As already noted, the above procedures apply
to compound as well as simple targets. It is
of course necessary to take proper account
of the spin and statistics in systems contain-
ing identical particles.

The usefulness of this new method is deter-
mined by the results it gives, as the physics
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FIG. 1. ~-wave phase shifts for an attractive Yukawa potential, based on 20 short-range functions.

is completely contained in the Schrodinger equa-
tion, whose validity is not in question here.
As a preliminary example, we report on the
S-wave scattering by an attractive Yukawa po-
tential. We take H= (2r) l(d /dh2)r ~ le

( =(k~) 'sinkr, P, =(kx) (l-e- ) cosky,
y. =r' le ~~, i= l, , n Here. k= (2E)"'
and n is a nonlinear parameter to which we
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FIG. 2. Convergence of expansion solutions for phase
shifts. Solid curve is defined by the fully converged re-
sults of Fig. 1. Numbers adjacent to the points indi-
cate the number of short-range functions used.

assigned various values. With this choice of

(, and (, the phase shift is 5=tan '(a, /a, ).
Note that the Hamiltonian II supports one bound
state. " For large expansion lengths n, we ob-
tain results which, except for large k, are com-
pletely independent of n. A plot for n =0 is
shown in Fig. 1. This curve gives a good def-
inition of the scattering over the entire range
from 0 to several hundred eV and, incidental-
ly, was produced in a few seconds of comput-
er time. More interesting is the behavior at
shorter expansion lengths. We found the results
to converge smoothly as a function of n for all
e values we tried, with somewhat more rapid
convergence near e = 2.5 than near a = 1.0.
At n = 2.5, all expansion lengths from n = 2 yield
phase shifts whose deviation from the curve
of Fig. 1 is not visually evident. The situation
at a= 1.0 is shown in Fig. 2. Even at this far-
from-optimum e value, the results are quite
good.

We acknowledge interesting discussions with
Dr. H. J. Kolker.

*On leave from the Department of Chemistry, Stan-
ford University, Stanford, California.

L. Hulthen, Kgl. Fys. Sallskap. Lund, Forh. 14, No.
21 (1944).

~W. Kohn, Phys. Rev. 74, 1763 (1948).
Iu. N. Demkov and F. P. Shepelenko, Zh. Eksperim.

174



VOLUME 19, NUMBER 4 PHYSICAL REVIE%' LETTERS 24 JUL@ 1967

i Teor. Fix. 33, 1483 (1967) [translation: Soviet Phys. —
JKTP 6, 1144 (1958)).

R. L. Armstead, dissertation, University of Califor-
nia. , Berkeley, 1965 (unpublished).

5K. R. Brownstein, dissertation, Rensselaer Polytech-
nic Institute, 1966 (unpublished).

6J. Schwinger, Phys. Rev. 72, 742 (A) (1947); a full-
er account appears in a paper by J. M. Blatt and J. D.
Jackson, Phys. Rev. 76, 18 (1949).

C. Schwartz, Phys. Rev. 141, 1468 (1966).
B. A. Lippmann, Defense Research Corporation

Technical Memorandum No. 560 (unpublished), p. 11.
~L. Schlessinger and C. Schwartz, Phys. Rev. Let-

ters 16, 1173 (1966).
OL. Spruch and L. Rosenberg, Nucl. Phys. 17, 30

(1960); Y. Hahn, T. F. O' Malley, and L. Spruch, Phys.
Rev. 129, 932 (1962).

~~C. Schwartz, J. Computational Phys. 1, 21 (1966).

NONINVARIANCE GROUP BY BOOTSTRAP AND REGGE BEHAVIOR*

Austin M. Gleeson and Renato Musto
Physics Department, Syracuse University, Syracuse, New York

(Received 29 May 1967)

By means of Regge theory and bootstraps, we motivate a chiral SU(2) SU(2) noninvar-

iance algebra of the meson isobar coupling strengths. We discuss the equivalence of these

approaches and compare our algebra with the previously postulated algebras of the meson
isobar system.

In the last few years, there has been a great
deal of activity concerning the development
of relationships between the masses and the
coupling constants of the strongly interacting
particles. These relationships, called sum
rules, are generally the manifestation of an
underlying noninvariance algebra. An exam-
ple of this method is the strong coupling rnod-
el of Cook, Goebel, and Sakita' and its exten-
sion by Kuriyan and Sudarshan. ' In these cas-
es, the basic algebraic structure, which is
larger than the underlying symmetry algebra,
is, although motivated by a field-theory rnod-
el, essentially postulated. Most of the sum
rules derived in recent years have been mo-
tivated by the Regge hypothesis~ or bootstraps. ~

The purpose of this paper is to show in a spe-
cific example how both the Regge and bootstrap
hypothesis can be used to motivate the existence
of an underlying algebra directly. This deri-
vation of the same algebra by the two methods
has also supplied us with an insight into the
relationship between them.

The motivation of our algebra by the Regge
hypothesis is based on the observation that the
forward-scattering amplitude, with isospin
one in the t channel, is dominated by the p tra-
jectory. Calling this amplitude Mi '(v) and

assuming that the background integral can be
moved to the left without picking up additional
contributions, we have that the amplitude f' '(v)
—= M' '(v)-R '(v), where R '(v) is the usual

p Regge-pole contribution, satisfies a super-

convergence relation. ' We write this relation-
ship as

K Kf ImM '(v)dv = f ImR' '(v)dv
0 0

b(0) ~p(0) +1
n (o)+1

p

where we have assumed that there exists a
K such that

f [ImM' '(v)-Ima' '(v)]dv =0.

We relate this amplitude to the isospin ampli-
tudes by observing that M' '(v) corresponds
to the terms odd under pion-isospin exchange:

where

=t'e I C
v (4)

np(0) +1
c =b (o)

NNpwm o (0) + 1
p

=[ ] M = M (3)ij ij ' ij ij
where n and P designate the pion isospin labels
and i and j the nucleon labels. Inserting this
relationship into Eil. (1) and saturating with
single isobar states, we have
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