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INTERFACIAL, BOUNDARY, AND SIZE EFFECTS AT CRITICAL POINTS*
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Exact results for the interfacial and boundary free energies (for free and for ferromag-
netic boundaries) are presented for the square, triangular, and honeycomb Ising lattices.
The boundary energies and specific heats diverge as lnl T Tc I —and (Tc T) —~, respec-
tively. This behavior is interpreted generally in terms of the rounding and displacement
of the specific-heat maximum in a finite system.

In view of the recently gained insights into
the critical. -point behavior of the bulk thermo-
dynamic properties of ferromagnets, fluids,
alloys, etc. ,

~ it is appropriate to consider in
more detail the corresponding interfacial and
surface (or boundary) properties and the relat-
ed distortion of a transition resulting from
finite sample size. This last point is relevant
to the shifts and rounding of specific-heat peaks
observed even in very careful experiments. 2

Although other possibilities must also be con-
sidered, the observed effects could be due to
the scale of some microcrystalline structure.
In this note we report~ some exact calculations
of the interfacial, boundary, and finite size
effects for the square-, triangular-, and hon-
eycomb-lattice Ising models. 4 The highly sin-
gular nature of the boundary free energy is
interpreted in terms of the shift of the specif-
ic-heat maximum with size. The probable na-
ture of the critical behavior in real three-di-
mensional systems is hence indicated.

To explain the principle of our calculations,
consider a large square-lattice Ising ferromag-
net with nearest-neighbor interactions Jx =Jy
and J&

=J2, in the center of which a vertical
"ladder" of j horizontal or x bonds have the
modified interactions $Z, . In general, these
perturbed bonds describe a grain boundary
whose associated free energy is just the incre-
mental free energy of the pertrubed lattice
over the uniform lattice. Evidently, the case
$ =0 describes a free edge (or boundary) of
2j sites. [The relative contributions due to
the end effects, here and below, are negligi-

ble for large j.] Lastly, one can see that the
special case $ = -1 corresponds effectively
to an interface or domain wall in the uniform
lattice, the incremantal free energy now yield-
ing the surface tension. This interface is "pinned"
at the ends of the ladder, so that although it
may wander statistically, its mean direction
is vertical. By perturbing a "staircase" of
alternating x and y bonds, diagonal grain bound-
aries, edges, and interfaces may be described.

A ferromagnetic edge in which all the bound-
ary spins are constrained (e.g. , by an infinite
local field ) to point "up, "which in the "lattice
gas" corresponds simply to a "hard wall, " may
be simulated by modifying a chain of j consec-
utive (say) vertical bonds and letting (J'2-~.
This ensures that the linked spins always point
the same way. Although this direction might
be up or down, the resulting two-fold degen-
eracy is completely negligible thermodynam-
ically. Note, now, that by making a duality
transformation' on the perturbed lattice for
the double free edge, one again describes the
pertrubations appropriate to the (double) fer-
romagnetic edge. [By convention we associate
—,
'

&& (bulk free energy per spin) with each "fro-
zen" spin in a ferromagnetic boundary. ]

The incremental free energy AI =jI'x due
to these bond perturbations may be calculated
by the Pfaffian methods developed for the Is-
ing and dimer correlation functions and is ex-
pressed as the logarithm of a determinant of
Toeplitz form and order j (or 2j). In the cas-
es $ ~ 0, the limit j -~ is found by treating
the matrix as cyclic. For the vertical grain
boundary on the square lattice this yields

F /k T = -, ln[(1-$ ' v, )/(1-v, )]-J in[2 (1 + $ ') + 2 (1-$ ')e ](dy/2m ),
X ,2 2 2 2w. . . , id(y)

where

v. =tanhK. , E.=J /kT, $'v =tanh(~. ),
z 1'
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and

where

5-0 as y -m+,

v, + = tanhK, + = exp( —2K,).

The expressions (1) a,nd (2) with $'=0 also
yield (a) the ferromagnetic boundary free en-
ergy of the triangular lattice (per pair of spins)
for the direction 2 if the first term in (1) is
replaced by K, and the inversion transforma-
tion is extended to'

exp( —4K,+)

= (v, +v v )(v +v v )/(v +v v )(1+v v v ). (3)

By setting J, = 0 one then obtains (b) the free
energy of a square-lattice vertical ferromag-
netic boundary. Alternatively, J1=Jx, J,= 0,
and J3=J yields the result for (c) a, diagonal
ferromagnetic boundary on the square lattice.
Taking the dual of these expressions confirms
(d) the square-lattice vertical free edge result
[Eq. (1) with $'=0] and also yields the free en-
ergy of (e) a diagonal free edge on the square
lattice. Similarly, the dual of the full trian-
gular-lattice formula gives (f) the free ener-

gy of a, honeycomb-lattice free edge (normal
to the 2 axis). Finally, the dual pair of expres-
sions for (g) a ferromagnetic honeycomb bound-

ary and (h) a free triangular edge have also
been obtained.

In the special case $ = —1, needed for the in-
terfacial tension cr(T), the relevant Toeplitz
determinant is generated directly by exp[i6(cp)].
Above T the Szego-Kac theorems proves, as
expected, that o(T) vanishes id'entically. Be-
low Tc we may appeal to Wu's analysis. ' For
an interface parallel to the 3 axis of the trian-
gular lattice we find that

o~(T)/0T = ln[sinh2Kz sinh2K2]

+ 2 ln[ —,
' (1+v, u, )"'+—,

' (1+v~ u2)'i'], (4)

u, = vs+ (v,/v, ) + (v,/v, ) ~ u, ——v~+ v,v, + (zizv2)- (5)

When Js = 0, the second term in (4) vanishes
and the first gives the diagonal surface tension
for the square lattice. The square-lattice lon-
gitudinal surface tension, first found by Onsag-
er, ' is recaptured by setting J,= 0, J2 =4x,
and J3=J . The result for the honeycomb lat-

where k, =2tanh2Ksech2K. Hence, we find

2J zr
ln I i I + 2 + c —— c t ln I i I +0 (t),

Iix -1, v 2K,
(8)

i=(T/T )-1-0,

where c, is a constant and K =-, In(1+A). As
shown in Fig. 1, the boundary energy thus di-
verges logarithmically. (Such a divergence
of the bulk energy is, of course, impossible. )
Similarly, the boundary specific heat diverg-
es with a simple pole:

gX K 92K ~

f '- ln I t I + c,~+0(t lnl t I), (10)

where c, are constants. For a longitudinal
edge the logarithmic singularity and disconti-
nuity in Ux/J have the same magnitudes as in

(8), again indicating isotropy near Tc. By the
transformations explained above it is clear
that the same singularities characterize free
and ferromagnetic boundaries on all the lattic-
es, except that in the latter case the amplitudes
are of opposite sign.

We will now try to relate these striking re-
sults to the limited height, rounding, and dis-
placement of the peak of the total specific heat
C~(T) of a finite sample of, say, lV'=nlx ~ ~ xnd
spins on a d-dimensional cubic lattice. As re-

tice' may be obtained directly from (4) and (5)
by applying the star-triangle transformation.
It may be written compactly using (3) as'0

v, (T)/kT= 2(K~ —K~ ).

The critical-point behavior is in all cases
the same, namely that o(T) vanishes linearly
with (T T). —Our calculations for the square-
lattice diagonal, however, also indicate that
o(T) becomes isotropic close to T& in the met-
ric described by x' =x' sinh'2K c+y'." See
Fig. 1 for the case J =J, sinh2K =1.x y'

The analysis of the integrals (1) for the bound-
ary free energies is quite involved. One may
re-express I x generally as an integral over
complete elliptic integrals but, in contrast to
the bulk free energy, all three kinds are need-
ed in most cases. Our simplest result is for
the energy per spin of a free diagonal edge on
the square lattice. For J„=J& and T Tc this
ls

Ux/J =
2 coth2K(+1+ (2/zz) K(Iz,)),
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gards the location of T ax, a naive mean-field
type of argument for a 4 =3 lattice with free
faces indicates that

NkT ~E
max N, 0

=JfdN nn -n n --n n -O(n, n2, n )], (11)

where EN 0 is the ground-state energy and
the negative terms arise from loss of binding
energy at the surfaces. Since Tmaz-Tc as
N-~, this suggests generally that

e=(T -T )/Tc max c

=bd '(n -'+ ~ ~ ~ +n -')=b/n
1 (12)

FIG. 1. Plots versus temperature of (a) the longitu-
dinal surface tension, (b) the diagonal surface tension,
and (c) the energy per spin of a free boundary for the
square Ising lattice.

result is to replace t' in the limiting singular
terms by

t*' = (t+ e)'+ 5' b'- -'c'(n -'+ n -')
where c =O(1). Smearing of the singularities
thus takes place over a width At = b (the peak
being shifted to t = -e). This is consistent with
the general interpretation that rounding occurs
when the range of correlation K ~(T) attains
the magnitude of the mean linear dimensions,
say na =ad"'(nl '+ +nd ') '". Assuming'
that K(T)- ItI ~, this suggests a width

-1/ v
b=b, T/T =c/nc (14)

C (T)/t

(It*I I)/o. +NB-(t+~, ~)+ '', (18)

where t* is given by (13), B is a bounded func-
tion, e-0 yields a logarithm, and, possibly,
AN-A[1+ (b'/n)]. For the square Ising lattice
(n = 0, v = 1, A = 8Kc2/v) substitution of t = -e
and t = 0 in this formula leads to the asymptot-
ic relations

For the plane Ising models, v= 1, and the width
and shift of the peak are of the same magnitude.
For d=3, however, 1&v&2 is expected' so that
the width may be much smaller than the shift.
A similar conclusion may be reached concern-
ing the effects of impurities, etc. As a fair-
ly wide experimental observation this seems
to be correct. '~

Qne may hence guess tentatively that the to-
tal specific heat of a general finite system near
7'c will be well described by"

with b = l. [For ferromagnetic boundary con-
ditions one similarly expects b = -1.] This
dependence on n is borne out by analytic study
of finite-plane Ising models for n, =n» while
numerical studies yield b =1.3. [For toroidal
(periodic) boundary conditions and n~ =n2 we
find b = -0.35, the smaller value being in ac-
cord with the corresponding naive prediction

0 12]

Analysis of the exact formulas for the free
energy of finite-plane Ising lattices as sums
over the eigenvalues of appropriate near cyclic
matrices ~' reveals that the transition round-
ing derives from the effective truncation at
low wave numbers q, =(m/n, a, w/n, a) of the lim-
iting integrals over reciprocal space. The main

C,C T
N max' N c

=A inn +A(D (q), D (q)j+
nz ' c

as n„n, -~ with q =n, /n, fixed. This again
is confirmed by detailed calculation. Indeed,
for torus we have found explicitly

D (q) =In(2"'/w)+C —v/4
C

pg 2g 2g 2 2g lng
2 E

2q(82+ 8~+ 84)
2 ~ 8, + 8~+ 84'

2-2
where CE is Euler's constant, 8;= &t(0 lt/q)
and p;(z I w) are the elliptic theta functions of
modulus e'~r. 'c Corrections to (17) and (18)

(18)
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C /0= (Ab/2d—) sgn/tjl& I

+ (Ab '/4dn) [ I t I
—I]+ (19)

For o. = 0 the leading singularities are just those
found explicitly in (10) (including the change
of sign for ferromagnetic boundaries when b

&0). Comparing the amplitudes of t ' indicates
b =1/2K =1.135; this compares not unfavor-

C
ably with the estimate b = 1.3, quoted above. 1'

We take this as a confirmation of our over-all
picture of the origin of the critical singulari-
ties in the boundary free energy and conclude
that (19) should provide a fairly reliable gen-
eral description.
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