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quired. If a vortexlike structure exists in the
sheath, the "vortices" should necessarily be
aligned nearly parallel to the plane of the foil
and not perpendicular as was suggested by
Hart and Swartz. " If they are pinned nearly
normal to the plane of the foil and hence near-
ly normal to the field, then upon changing the
angle by 1' as described in the previous para-
graph, large torques are not expected to oc-
cur since the effective angle of the vortices
is changed to 90 + 1'. Qn the other hand, if
these vortices are parallel to H, a change of
1' is indeed considerable and large torques
would occur.

We summarize the results as follows: (1) Equa-
tion (6) is consistent with the observed large
torques above H~2, the straight-line relation
of v/H vs 8. along the minor hysteresis paths,
and the correct calculation of (AT)~q and Mf, .
(2) The partially plated sample did exhibit a
vanishing (br)&q. Using Eq. (6) we deduce
for the first time values for Ms and 4 and a
new model for the current distribution above

H~2. In this model the sheath contains either
a normal core or.a "vortexlike" structure pa-

ra, llel to the plane of the foil.
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It is proved that the spin of the ground state of a magnetic atom having exchange inter-
action with a nonmagnetic host metal is & + 2, where + = spin of noninteracting magnetic
atom, the upper sign is appropriate to antiferromagnetic coupling, and the lower, to
ferromagnetic coupling. This result is generalized to any number of conduction bands
and to nonpointlike impurities, provided that the exchange interactions with the number
of conduction bands, or with the various partial waves, are all of the same sign. For
p such bands or partial waves, the result is that the ground-state spin=

~ sv~

The present paper concerns the ground state
of a magnetic atom in a nonmagnetic host metal.
We use the s-d exchange Hamiltonian to de-
scribe this situation, the exchange perturba-
tion having been first shown by Kondo' to re-
sult in a logarithmic singularity in third and

higher orders of perturbation theory. It is
not known, in fact, whether the perturbation
series converges when carried out to all orders,
despite reasonable results of various methods
of partial series summations which have been
carried out to infinite order' in the coupling
constant J. Indeed, Silverstein and Duke' have

demonstrated that even methods which agree
to within logarithmic accuracy above the Kon-
do temperature will disagree below it, and
potentially can result in a plethora of predict-
ed ground-state properties. However, recent
variational solutions, some of which are based
on the assumption that the ground state is a
nonmagnetic singlet state, have circumvent-
ed the difficulties of perturbation theory, al-
though the problem is far from an exact solu-
tion at the present time. For this reason it
might be useful to have some exact theorems,
and in the present work we shall prove that
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in which

'a ~l
(2)

and the three components of the vector o are
the usual Pauli matrices. The d shell of the
magnetic atom is presumed embedded in an
s-like conduction band, hence the nomenclature
"s-d exchange interaction. " The conduction-
band states are now to be decomposed accord-
ing to their orbital angular momentum relative
to the impurity (or Kubic harmonics') and on-
ly l = 0 (s-wave) components can interact with

a pointlike impurity. We shall see how to re-
lax this condition to take care of several par-
tial waves at the end of the analysis, but at
present, according to our assumptions, elec-
trons belonging to l t0 do not see the impuri-
ty and may therefore be factored out of the
problem, being in their usual states in the
noninteracting Fermi sea.

The s-wave electrons obey a one-dimension-
al wave equation in the radial coordinate r,
with the exchange interaction at x= 0 and the
boundary of the crystal at x=R. Electrons in
this one-dimensional manifold may be ordered,
x»x» ~, with x;&x;+1 with the x' s labeling
spin-up electrons, and y„~ ~ ~, with y~&y, +1

for antiferromagnetic coupling and impurity
spin &, the ground state is indeed a singlet.

We then extend the analysis to a variety of
similar problems which have not been so thor-
oughly investigated as the above. For ferro-
magnetic coupling, we shall show the ground
state to be a triplet. For arbitrary impurity
spin s- &, we find the ground state to belong
to s + 2, with the upper sign for antiferromag-
netic and the lower sign for ferromagnetic cou-
pling, a convention to which we shall adhere
throughout the present work. Finally, we gen-
eralize to the case of a number of conduction
bands, or partial waves, all interacting with
our magnetic atom with the same sign of the
coupling constant. When the number of such
bands is P, the result is Is v -,'P

I for the ground
state. The proof is unfortunately rather in-
volved, considering the intuitive character
of the results as stated above, but it is the
simplest we have been able to concoct. We

start with the canonical Hamiltonian

H=P e n +-,(J/N)P S o'&&,
k km kk'

and the y' s labeling the radial coordinate of
spin-down electrons. The boundary conditions
are that the wave functions vanish when any
x~=x~+1 or any y~=y~+. 1, or whenever any
coordinate equals R or becomes negative. Each
eigenstate of II may be written as follows'.

where we first study the case of an impurity
with spin s = -„n and p are the eigenstates
of spin up and down for the localized spin, and
the functions f~ vanish whenever any coordi-
nate is negative, or whenever any pair of x's,
or of y's, are equal, or whenever any coordi-
nate exceeds R.

The method of proof is the following: We
arrange for f+ and f to be both positive in
the ground state, and compare them with a
model state of known spin. If the two are not
orthogonal, then our unknown ground state
must belong to the same total spin eigenvalue
as the model state.

The model state is the ground state of a sys-
tern labeled II, which differs from the original
one (labeled I henceforth) only by the introduc-
tion of a thin impenetrable potential barrier
at x= a. By this device, we can restrict a
single electron to interact with the impurity,
all the remaining particles being constrained
to the region x&a. The minimum kinetic en-
ergy of an electron in the region x&a is
k'n'/2ma', but an electron also benefits from
the attractive potential well at the origin, the
depth of this well being 2 I&ls (for J&0) and
—,'J(s+ l) (for J &0). A second electron bene-
fits considerably less from the attractive well
because the presence of the first electron ac-
cording to the exclusion principle forces it ei-
ther to have a large kinetic energy (one extra
spatial node) or else to have unfavorable spin
direction with respect to the impurity spin.
Either way, we can pick a distance a such that
the energy of the first electron near the impu-
rity is below the Fermi level but not that of
a second or any successive electron. Assum-
ing the total number of conduction electrons
to be odd, the total spin in the ground state
of II is s + 2, just the spin of impurity plus a
single electron; the conduction sea at ~&a
is in its usual singlet ground state.

We shall now show that the ground state of
II as described above is not orthogonal to the
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ground state of I. We now make use of Fro-
benius' theorem, which states that the ground
state of a Hamiltonian, all of whose nondiago-
nal elements are nonpositive and real, is a
linear sum of configurations all with positive
coefficients. ' Now if J is negative, the off-
diagonal matrix elements of the interaction
Hamiltonian,

—,.J'(S+o + S o+), (4)

are naturally negative; both these negative
matrix elements and the kinetic energy are
minimized in a nodeless ground state'; so it
follows that the functions f+ and f must have
the same sign in the ground state (chosen for
convenience to be positive). Now this holds
true for both systems I and II because the de-
tails of the potential do not enter into the proof. '~

The ground states of I and II, which can both
be expanded in a common complete set of ba-
sis functions all with positive coefficients, thus
cannot be orthogonal to one another. Finally
we prove the nondegeneracy of the ground state:
All the eigenstates of II are orthogonal to one
another and as two nodeless states cannot be
orthogonal to one another, it follows that the
(nodeless) ground state is unique and nonde-
generate in a subspace of fixed ztotal

The proof for antiferromagnetic sign of cou-
pling (J )0) is preceded by a rotation of the
local spin operators by 180 about the Sz axis.
This again renders the off-diagonal elements
(4) negative leaving the rest of the Hamilton-
ian unaffected. Once again the kinetic energy
and off-diagonal matrix elements conspire to
a nodelesss ground state7 for both systems I
and II. The ground states of these systems
are not orthogonal, from which it follows that
the ground state of I is an eigenstate of total
spin of eigenvalue s-2 and is nondegenerate
in subspace of fixed Sz total. This terminates
the proof for point impurities in a nondegen-
erate conduction band.

The extensions to lc0 for a nonpointlike im-
purity, or to the case of several conduction
bands, are entirely analogous. It is required
that all the bands interacting with the impuri-
ty do so with the same sign of exchange cou-
pling constant, although the magnitudes of J
may be arbitrary. In practice it should never
be necessary to consider more than two or
three partial waves, or more than half a doz-
en conduction bands. The model system II is
defined as having the following properties:

There is an impenetrable thin barrier at ay for
band No. l, , at ap for band No. p, placed
exactly such that a single electron from each
band lies in the interval near the origin, the
remaining electrons being at the far side of
their respective barriers. The word "band"
also stands for partial wave, and we may, more-
over, have any number of partial waves in any
number of bands, provided only that all the
J's have the same sign. Now the ag are picked
so that any additional electrons could be brought
to the neighborhood of the impurity only at the
expense of raising their energy above the Fer-
mi level (which is determined by the large num-
ber of particles in the Fermi sea); this pro-
motion will not occur in the ground state which
we are studying. For a total of p such bands,
or partial waves, there is a total of P electrons
confined near and interacting with the impuri-
ty. The magnetic part of the Hamiltonian may
be expressed as follows, once all the electrons
have been placed in their spatial ground states:

H =p 2gSo
mag n=].

in which the g's are calculable functions of the
J's (well depths), a' s, band structure param-
eters, etc. The g's can be assumed to be giv-
en parameters (and certainly have the same
signs as the original couplings constants, the
J's), but as they cannot all be presumed to have
equal magnitudes, it turns out that the eigen-
states of (5) are difficult to obtain in general.
As we are not interested in the details of the
solutions of (5) but only in the symmetry of
the ground state of this effective Hamiltonian,
we proceed as follows'. Introduce a new mod-
el system III, in which g has the same sign
as the g's in (5):

f7

II = —,'gS ~ 0
@=1

The ground state of IIIII is found trivially to
belong to total spin Is+ & i. But the ground
state of this Hamiltonian is not orthogonal to
the ground state of (5), which in turn has the
same quantum numbers as the ground state
of system I, which we are studying. This com-
pletes the proof of the statements in the intro-
duction.
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Whi1e these results are exact, they may not
be useful if at any finite temperature thermal
fluctuations destroy the magnetic moment (or
lack thereof in the singlet ground state). Suhl
has remarked' that the spin of the magnetic
atom is a needle in the haystack of thermal
fluctuations, and others may also be led to ques-
tion the meaning one can attach to the ground-
state spin quantum number. We therefore pro-
pose that one should consider only the n elec-
trons in the vicinity of a magnetic atom, the
vicinity of the impurity being a large but finite
volume which remains fixed as the total vol-
ume and N —~. The total spin of the metal may
indeed be as large as ATN'"/E&- at finite tem-
perature, but only a fraction n/N of this is
localized in the vicinity of the impurity. Thus
we must compare the ground-state spins which
are of order unity, with the local thermal fluc-
tuations which are merely of order 4Tn/N'"E~
—0 in the limit N -~. This qualitative argu-
ment indicates that a knowledge of the ground
state and elementary excitations of the mag-
netic impurity and neighboring electrons, such
as one seeks in a variational approach, is
indeed sufficient to determine the low-temper-
ature properties. Finally, we remark that
model system II provides, in fact, a new vari-
ational solution of the problem, albeit an ex-
tremely crude one compared with the other
more detailed calculations. 4 Therefore it would

be interesting if an analogous theorem could
be proved using the methods of perturbation
theory'~' or of Green's functions.
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