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I. Introduction. —It has been shown by sever-
al authors' ' that the simple kinematical the-
ory is inadequate for the detailed description
of low-energy electron-diffraction (LEED) in-
tensities as functions of electron energy. This
is mainly due to the fact that scattering cross
sections are large and, hence, multiple scat-
tering is important. Dynamical effects in LEED
(i.e., multiple scattering) have been treated
by Hirabayashi and Takeishi' using a modified
von Laue method, and by McRae3 whose theo-
ry is based on Lax's self-consistent field for-
malism. In this Letter, we present an alter-
native dynamical theory for the calculation of
LEED intensities.

II. The model. —Our model has the following
properties' . (1) The primary beam of electrons
is represented by a plane wave.

(2) The crystal extends over the entire infi-
nite half-space z &0 [i.e., the crystal surface
is a plane (z = 0)j.

(3) Within the crystal, the potential is per-
fectly periodic in three dimensions.

(4) The majority of (elastically scattered)
electrons traveling away from the crystal are
contained in a number of discrete "beams. "
Experimental data show that this assumption
is generally true in the energy range we are
considering. (The spots in the diffraction pat-
tern are bright compared with the background. )

One of the basic limitations of the model de-
scribed above is the fact that surface anoma-
lies in the crystal lattice cannot be taken into
account. However, the model is still somewhat
more general than the one used by McRae' be-
cause we do not assume the potential to be of

the "muffin-tin" variety, and it is also more
general than the Hirabayashi model since we
do not restrict ourselves to the "two-beam"
approximation.

III. Theory. —We start from the standard Bethe
theory' in which the potential function W(r) is
expanded as

W(r) = Z w exp(2vi g ~ r),
pyq, s ptqys ps

ques

where gp s=Pbl+qb2+sb3, and the b's de-
fine the unit cell of the reciprocal lattice. The
real part of W(r) gives rise to elastic scatter-
ing, whereas the imaginary part is used to sim-
ulate inelastic scattering.

The wave function g in the crystal is written
in the form

g(r) = Z g exp(ik ~ r), (2)
l, m, n tt, m, n &, m, n

where k~ m „=ko+ 2n g~ m „, and kp is a vec-
tor whose components are determined by the
boundary conditions. The coefficients gf m „
are then subject to a set of compatibility con-
ditions'

(z'-a ')
L, m, n l, m, n

+ Z w
/jan

=Op
p, q, s p, q, s l-p, m —q, n s—

which are a direct consequence of the fact that
g(r) must be a solution of the Schrodinger equa-
tion, V2g+ (If'+ W)$ = 0. K is the magnitude of
the propagation vector of the primary electron
beam.

According to property (4) of the model, the
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wave function 4 in the vacuum is written as

C (r) = Z C exp(ih ~ r),
m78 7m 7 Pl

wherelhf m „I=K.
With the assumption that the crystal surface

(z =0) coincides with one of the crystallograph-
ic planes (i.e., 100, 110, 111, etc. ), it is easy
to show that the surface boundary conditions
can be stated as

l~g, , & =2l
I—

(5)

C (h 1)
n l, m, n l, m, n z

(k ~ 1 ),
n l, m, n l, m, n z' (6)

where lz is a unit vector in the z direction.
The sums on the left-hand side of Eqs. (5) and

(6) involve only two terms, corresponding to
the two solutions of the equation I hf m „'I =K.

7

Furthermore, one finds that the real parts
of the x and y components of k, are determined

by the direction of the incident electron beam,
whereas their imaginary parts must be zero,
due to the boundary conditions at infinity. The
z component of k, is a complex number whose
imaginary part is negative because I g(r) I must
approach zero as z approaches -~.

The problem now consists of solving the sets
of equations (3), (5), and (6). These equations
cannot be solved exactly if the sums are ter-
minated at a finite number of terms. Howev-

er, an approximate solution can be obtained
in the following way: From Eq. (3) it is clear
that the gf n's with large indices must be
small. In fact, an actual calculation (Fig. 1)
shows that all gf m „'s which lie outside the

7 7

Ewald sphere and whose distance from the sur-
face of that sphere is more than a few recip-
rocal lattice spacings are negligibly small.
We therefore consider only those (~ m n's
which lie inside and around the Ewald sphere
and assume all others to be zero. With this
assumption the problem is overspecified, and
we have to use a least-squares technique to
find the best possible solution. The actual
number of gf m „'s that have to be computed

7

is still quite large. Depending on the electron
energy, it varies between a few hundred and

a few thousand.
IV. Results. -Calculations were performed

for a primary electron beam of unit intensity,

FIG. 1. Expansion coefficients of wave function
g(r) in the crystal. Conditions: 40-V electron beam
of unit intensity incident normally on [100] face of Al
crystal; scattering potential described by a 27-term
Fourier expansion (see text). Note: Only the lIll m „'s
with /+m even are plotted; all $1 m n's with /+m odd
are zero due to symmetry of the fcc lattice.

incident normally on the [100] face of an Al
crystal. In the expansion of the real part of
the crystal potential [Eq. (1)], the first 27 terms
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FIG. 2. Beam intensities versus energy. Condi-
tions: Primary beam of unit intensity incident nor-
mally on f100] face of Al crystal; same scattering
potential as in Fig. 1; the arrows indicate those inci-
dent beam energies which give rise to Bragg reflec-
tions in the crystal (the inner potential correction is
10 V, as explained in the text); pf designates the or-
der of the Bragg peaks, based on a layer spacing d
=2.02 JIJ. Note: beams with "mixed" indices are ab-
sent due to symmetry of the fcc lattice.
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were considered. The first term [Re(wo, ,)) )
= 10 V] is the amount of energy the electron
gains when it enters the crystal (i.e. , the in-
ner potential). This was determined experi-
mentally by observing the energy shift of the
Bragg reflection peaks. Because of the sym-
metry of the fcc lattice, all coefficients zvp & ~
with "mixed" indices are zero. The remain-
ing coefficients were calculated by using the
method outlined in Ref. 5. The imaginary part
of the potential was assumed to be constant,
i.e., Im[W(r)] =2.5 V.

Figure 1 is a plot of I gf I „I' as a function
of / and m, on a plane (n = const) in reciprocal
space. The distance between the plane and the
center of the Ewald sphere is less than one re-
ciprocal lattice spacing. It is seen that jg& I „~'

) )
drops off very rapidly with increasing indices
l and m. Similar graphs are obtained for oth-
er sections through the Ewald sphere. Figure
2 shows the intensities of the (0, 0), (1, 1), and

(0, 2) beams as a function of electron energy.

V. Conclusions. —First, it has been demon-
strated that LEED intensities ean be calculat-
ed by using Bethe's theory. ' Second, the cal-
culated curves of intensity versus energy (Fig.
2) show the well-known (integer order) Bragg
reflection peaks as well as additional noninte-
ger order peaks, similar to the ones predict-
ed by McRae. ~ Third, it is found that, both
inside and outside the crystal, the expansion
of the wave function includes many terms whose
coefficients are of similar order of magnitude.
All these "waves" should be considered, and
the "two-beam" treatment appears to be unsat-
isfactory.
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Torque measurements on Type-II superconducting foils in nearly parallel applied mag-
netic fields H indicate that the torque above H&2 can provide a direct measure of the
magnetization. From the results above H~2 we deduce two magnetizations, My associat-
ed with the bulk sample, and Mq associated only with the superconducting sheath. The
measurements indicate that Mz is irreversible with H, contrary to prediction, and that
the sheath itself behaves as if it is multiply connected.

Since the theoretical prediction' and the ex-
perimental verification' of a sheath state in
Type-II superconductors above the critical
field H~2, there has been considerable exper-
imental effort' to characterize the properties
of the sheath state. In addition, recent theo-
retical work ' has led to a model of the cur-
rent distribution in the sheath which has met
with some success in explaining magnetization
measurements above 8~2. This model is shown
schematically in Figs. 1(a) and 1(b) for a su-
perconductor of rectangular cross section and
of unit length. (In the following discussion we
treat the currents in the superconducting sheath
as average line currents although of course
they have a finite spatial distribution. ) Clock-
wise and counterclockwise currents J, and J,

are predicted to flow perpendicular to the mag-
netic field H in a region extending a few coher-
ence lengths below the surface. According
to the theory, the direction of each current
remains fixed for a given applied field direc-
tion, while the magnitudes of J, and J, may
change continuously such that the difference
AJ= J,-J, can be positive or negative depend-
ing on whether the field is increasing [Fig.
l(a)] or decreasing [Fig. 1(b)].

In order to facilitate the following discussion
we designate the current J, which flows around
the inner path as J and denote the current J,
flowing around the outer surface as J+ ~J.
The current J+ h J encloses the total cross-
sectional area of the bulk, A, and the current
J encloses the inner area A-M, where M
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