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Table I. Dipole coefficient CHH (in a.u. ) obtained
from the [n, n] and [n, n-1] Pade approximants. a

Upper bound

[n, n]
Lower bound

[n, n —1]

1
2
3
4
5
6
7

Zxacta

6.780
6.542
6.517
6.499
6.499
6.499
6.499

6.499

6.249
6.470
6.493
6.497
6.498
6.499
6.499

For positive e', a continuation of this series
which provides an upper and a lower bound,
respectively, to the exact continuation is giv-
en by the [n, n] and [n, n-l] Pads approximants. s

'Use of these approximants to n~(i~) and ay(i~)
in Eq. (1) yields the desired bounds for C~f, .

As an illustration of the method we have con-
sidered atomic hydrogen and calculated exact
values for the nk in Eq. (4). For the lowest-
order Pads approximants [1, 1] and [1,0], de-
termined by the requirement that the power
series expansion of these approximants equal
Eq. (3) to order k =2 and k =1, respectively, '
the results are compared with the exact values'

Value obtained by L. Pauling and J. Y. Beach, Phys.
Rev. 47, 686 (1985); J. O. Hirschfelder and P. O. Low-
din, Mol. Phys. 2, 229 (1959), generally considered
to be the exact nonrelativistic value for CHH.

for oH(i&u) in Fig. 1. Since the [n, n] approx-
imants approach a nonzero value as i~ -~ (see
Fig. 1), a useful upper bound for n(i~) over
the entire ~ range is obtained by joining the
[n, n] approximant to the asymptotic limit [nH(i&a-~) =N/&u', where N is the number of electrons],
which is itself an upper bound, at the crossing
point [Fig. 1]. Correspondingly, the upper-
bound integral for CHH [Eq. (1)] becomes a
sum of two parts, the dividing ~ value being
determined by the crossing point of [n, n] and
N/&u2. The resulting upper and lower bounds
for CHH are listed in Table I. Even the [1,0]
and [1,1] bounds are within 5 /o of the exact
value and the [4, 4], [6, 5] results agree to four
significant figures.

As an alternative to a purely theoretical ap-
proach, the required nk values [Eq. (4)] can
be obtained from optical-dispersion and relat-
ed data, as well as from oscillator-strength
sum rules. To illustrate this procedure, we
use experimental estimates' for the first three
np coefficients of the noble gases to construct
the lowest-order Pads approximants and to
determine semiempirical bounds for C~~. The
results are presented in Table Il, which also
includes experimental values, some of which
fall outside the bounds (e.g. , He-Ne, He-Ar).
Tighter error bounds can be achieved with high-
er Pade approximants [see Table I] or by close-
ly related methodss if additional data [e.g. ,
excitation energies, oscillator strengths] are

Table II. Dipole coefficient C~y coefficients (in a.u. ) for some noble gases.

Experiment
Lower bound

[1,0]
Upper bound

[1,1]
Average
of bounds

Semiempirical
estimatesf

He-He
He-Ne
He-Ar

Ne-Ne
Ne-Ar

1.47a
4b

12 b 8 5c

6 3 d 6 4d
21c

61,' 63,d 67d

1.37
2.67
8.82

5.19
17.15

59.0

1.59
3.65

11.64

8.97
27.14

85.8

1.48
3.16

10.23

7.08
22.14

72.'4

1.47
3.04
9.65

6.38
19.7

65.1

aAccurate calculation; e.g. , Y. M. Chan and A. Dalgarno, Proc. Phys. Soc. (London)6, 777 (1965); see, also,
Ref. 2.

bFrom beam measured by H.. Duren, R. Helbing, and H. Pauly, Z. Physik 188, 468 (1965).
From beam measured by E. W. Rothe, L. L. Marino, H. H. Neynaber, P. U. Rol, and S. M. Trujillo, Phys.

Rev. 126, 598 (1962); the values in the table are corrected from the original results as suggested by Z. %. Rothe
and R, H. Neynaber, J. Chem. Phys. 42, 3206 (1965).

From low-temperature transport data by R. J. Munn, J. Chem. Phys. 42, 3032 (1965); E. A. Mason, R. J.
Munn, and F. J. Smith, Discussions Faraday Soc. 40, 27 (1965).

From beam measurements by E. &. Rothe and R. H. Neynaber, J. Chem. Phys. 43, 4177 (1965).
R. J. Bell, Proc. Phys. Soc. (London) 86, 17 (1965); K. L. Bell and A. E. Kingston, Proc. Phys. Soc. (London)

90, 901 (&967).
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introduced. However, the most direct proce-
dure would be to employ Eq. (3) and higher at,
coefficients, for the determination of which
more extensive refractive-index measurements
would be very desirable.

The question of the legitimate continuation
of an approximate n(iu), as well as other as-
pects of the theoretical and semiempirical ap-
plications of Pads approximants to dynamic
polarizabilities and dispersion forces, will
be discussed in a subsequent publication.

*Work supported in part by a contract with the U. S.
Atomic Energy Commission.
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INSTABILITIES IN A TRAVELING PERIODIC BUMPY THETA PINCH

F. Troyon
Laboratoire de Recherches en Physique des Plasmas, Lausanne, Switzerland

(Received 13 November 1967)

A P = 1 theta pinch which, according to Haas and Wesson, would be stabilized by a
traveling wave is shown to be unstable. The plasma is described by the incompressible
fluid model. It is shown that most of the modes, ~ 1.754 ~, are unstable where 6 is
the ratio of the amplitude of the radius modulation to the mean radius of the pinch.

Recently Haas and Wesson' have proposed
a new scheme for obtaining a P =1 toroidal 8

pinch which is in equilibrium and stable. Mey-
er and Schmidt' have shown that the outward
drift of the plasma due to the curvature of the
torus can be suppressed by corrugating the
plasma surface. The effect of the alternating
regions of good and bad curvature on the sta-
bility of the confinement has been studied by
Haas and Wesson and Morse using a linear
analog to the toroidal configuration. They find
that there are instabilities. The new idea of
Haas and Wesson is to 'make the corrugated
periodic field travel along the pinch at a veloc-
ity V~. Again using a linear analog configura-
tion, they claim there will now be stability for
all modes m ~ 1 provided that V~ &V~, where
V~ is given by V~'= Bp'/p, Bo being the mean
value of the magnetic field at the plasma sur-
face and p the plasma density. This result is
certainly very surprising. Up to now, in all
the proposed schemes of confinement with vari-
able periodic fields' ' it has not been possible
to obtain stability for any frequency of the field

for an ideal fluid. The object of this Letter
is to re- examine the equation obtained by Haas
and Wesson and show that there are also insta-
bilities in this scheme in the region m 2 1.756,
where 6, is the ratio of the amplitude of the
wave 6B to the mean radius of the pinch R, .

Let us restate quickly the problem and the
notation. The plasma column of radius R =Rp[l
+ 5(z —V~t)] is confined by the magnetic field
B = Bp+ b(g-V~t) b(z) and b(z) being period-
ic of period I-. It is assumed that L»RO and

t 5 I «1. In the frame of ref er ence of the wave,
the field and plasma radius are now functions
of z only and the plasma appears to flow with
a velocity V(z). Assuming that the plasma, can
be described by the incompressible-fluid mod-
el (Haas and Wesson's hypothesis), V and B
are determined by the two equations

B +%=const,

A'V = const,

where the density has been taken as unity. The
equation describing the motion of a surface


