RISING TRAJECTORIES, FALLING RESIDUES, AND EXPERIMENT

H. Goldberg

Department of Physics, Northeastern University, Boston, Massachusetts (Received 9 November 1967)

We attempt here a limited experimental test of a recent speculation that the Regge residue function, $\beta(s)$, shows an exponential or faster decrease with $\alpha(s)$ as $s \to \infty$ to insure polynomial boundedness for the total amplitude.

Khuri¹ has shown that if the scattering amplitude f(s,z) is bounded by a polynomial in s at fixed z for $s \to \infty$, then we must have the condition²

$$\lim_{\substack{s \to \infty \\ z \text{ fixed}}} |\beta(s)P_{\alpha(s)}(z)|/s^N = 0.$$
(1)

3.7

for any Regge contribution in the direct channel. This may be satisfied with a "rising" trajectory

$$\alpha(s) \xrightarrow[s \to \infty]{s \to \infty} \infty$$

if the residue function $\beta(s)$ satisfies (in the spinless case)³

$$\beta(s)_{s \to \infty} e^{-b\alpha(s)}.$$
 (2)

A model implying a high-s behavior

$$\beta(s) \xrightarrow[s \to \infty]{} \operatorname{const}[\alpha(s)/e]^{-\alpha(s)}$$

was suggested by Jones and Teplitz⁴ on the basis of incorporating the Mandelstam symmetry⁵ into the theory. The aim of this communication is to correlate an analog of the requirement (2) for the πN case with experiment by relating the appropriate β to the partial widths of the known B = 1, Y = 1 resonances and attempt to see any tendency for (2) to be fulfilled.

We first extend the work of Khuri¹ in a straightforward way to the πN case, and write a bound analogous to (2) on the residue functions defined by

$$\beta(\sqrt{s}) = \lim_{J \to \alpha(\sqrt{s}) + \frac{1}{2}} [J - \frac{1}{2} - \alpha(\sqrt{s})] f(J, \sqrt{s}), \quad (3)$$

with

$$\operatorname{Im} f(J, \sqrt{s}) = k |f(J, \sqrt{s})|^2$$
(4)

for J = half integer, $(m + \mu)^2 \le s \le (m + 2\mu)^2$, and $4k^2 = s - 2(m^2 + \mu^2) + (m^2 - \mu^2)^2/s$.

Subscripts on β , α , and f supplying isospin, parity, and signature are implicit.

By explicating the contribution of a given

Regge pole to the scattering amplitudes f_1 , f_2 ,⁶ we can arrive at the proper prelude to the requirement (2) on β :

$$|\beta(\sqrt{s})P_{\alpha}(\sqrt{s})+1'(z)| \leq s^{N}$$

$$\pm \beta(-\sqrt{s})P_{\alpha}(-\sqrt{s})+1'(z)| \leq s^{N}$$

$$z \text{ fixed}$$
(5)

which yields the analog of (2) (assuming no cancellations),

$$\ln\beta(\sqrt{s}) < -\operatorname{const}\alpha(\sqrt{s}). \tag{6}$$
$$\underset{\alpha \to \infty}{\overset{s \to \infty}{\longrightarrow}}$$

From Eqs. (3) and (4) we may derive the following relations at a resonance of mass $\sqrt{s_B}$:

$$\beta(\sqrt{s}_R) = \left[\frac{d\operatorname{Re}\alpha(s)}{ds}\right]_{s=s_R} \frac{xs_R^{1/2}\Gamma}{k(s_R)}, \qquad (7)$$

where $\Gamma = \text{total}$ width of the resonance, and $x = \Gamma_{\text{elastic}}/\Gamma = \text{elasticity of resonance}$.

Let us examine the logarithm of β as given by Eq. (7). The variation of $\ln(s_R^{1/2}/k_R)$ is small compared to that of $\ln x$ in the energy range considered, and of course goes to zero as $s \rightarrow \infty$. Experiments⁷ do not seem to indicate large variation of Γ with the resonance, and hence even less of $\ln\Gamma$.

Finally, present indications are that $d\alpha/ds \simeq \text{const}$,⁸ at least in the energy range considered. Hence Eqs. (6) and (7) yield the approximate requirement

$$\ln x \underset{\alpha \to \infty}{\ll} -b\alpha(\sqrt{s}), \quad b > 0.$$
(8)

We will test this condition for values of α in the higher resonance region.

In Fig. 1 are plotted the presently known or estimated values of $\ln x$ for the N_{γ} and Δ_{δ} trajectories against values of $\alpha = J - \frac{1}{2}$ assumed by Barger and Cline⁸ in their Chew-Frautschi plots. The values of x are those given in Column 6 of Table I, Ref. 8. These have been derived from measurements on elastic cross sections using the spin assignments in Ref. 8 [since

1391

FIG. 1. Logarithm of the inelasticity x as a function of $J - \frac{1}{2} = \alpha$. Experimental points are obtained from Ref. 8.

cross-section measurements determine only $(J+\frac{1}{2})x$ for a resonance]. Where there are elasticities available as a result of phase-shift analvses, these have been averaged with the crosssection values. Note that the values of x used do not depend on the resonance-Regge-pole model used by Barger and Cline.

Since the experimental data available on the N_{α} resonances are too sparse, we have omitted them from consideration.

Results.-Although each datum point in the figure should be accompanied by large, unknown error bars, and s is hardly infinite, yet three interesting facts seem to be roughly indicated:

(1) The inelasticity x (and hence β ; see previous paragraph) falls at least as fast as $e^{-b\alpha}$, b > 0.

(2) There is some approximate kind of universality in the fall-off. If one insists on an average exponential fall at the highest J values, we might say that

$$\beta \approx \operatorname{const} e^{-0.8\alpha}$$
 (9)

for the N_{γ} and Δ_{δ} trajectories. It is amusing to speculate whether the constancy of $d \ln \beta / d\alpha$ is correlated to the constancy of $d\alpha/ds$ for the same trajectories.

(3) The detailed behavior $\beta \sim 1/\Gamma(\alpha + \frac{3}{2})$ suggested in Ref. 4 seems to predict too rapid a drop of β , at least within the limitations of the present data. For instance, if one normalizes this form to give the observed inelasticity at $\alpha = 7$ for the Δ_{δ} , the inelasticity is off from the measured value by a factor of 20 at $\alpha = 9$. However, the data are still much too limited to make a definite statement.

To conclude: We have demonstrated that experimental elasticities make plausible a general conjecture of Jones and Teplitz⁴ about the rapid fall-off of $\beta(s)$, enabling α to approach ∞ and remain consistent with certain boundedness assumptions on the total amplitude. It would be of interest to test these results on the N_{α} trajectory when there is sufficient experimental information.

The author wishes to thank Professor Y. Srivastava for some discussion and a reading of the manuscript.

¹N. N. Khuri, Phys. Rev. Letters 18, 1094 (1967). ²This bound may also be derived by demanding the existence of partial-wave dispersion relations with a finite number of subtractions. A treatment of this point will appear elsewhere.

³The essential point in the proof is that $|P_{\alpha}(z)| < e^{b\alpha}$, $\alpha \rightarrow \infty$ with b > 0.

⁴C. E. Jones and V. L. Teplitz, Phys. Rev. Letters <u>19</u>, 135 (1967). ⁵S. Mandelstam, Ann. Phys. (N.Y.) <u>19</u>, 254 (1962).

⁶V. Singh, Phys. Rev. 129, 1889 (1963).

⁷See, for instance, A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Podolsky, L. R. Price, Matts Roos, Paul Soding, W. J. Willis, and C. G. Wohl, Rev. Mod. Phys. 39, 1 (1967).

⁸V. Barger and D. Cline, Phys. Rev. 155, 1792 (1967).