RISING TRAJECTORIES, FALLING RESIDUES, AND EXPERIMENT

H. Goldberg

Department of Physics, Northeastern University, Boston, Massachusetts (Received 9 November 1967)

We attempt here a limited experimental test of a recent speculation that the Regge residue function, $\beta(s)$, shows an exponential or faster decrease with $\alpha(s)$ as $s \rightarrow \infty$ to insure polynomial boundedness for the total amplitude.

Khuri' has shown that if the scattering amplitude $f(s, z)$ is bounded by a polynomial in s at fixed z for $s - \infty$, then we must have the condition²

$$
\lim_{\substack{S \to \infty \\ z \text{ fixed}}} |\beta(s)P_{\alpha(s)}(z)|/s^N = 0.
$$
 (1)

for any Regge contribution in the direct channel. This may be satisfied with a "rising" trajectory

$$
\alpha(s) \xrightarrow[s \to \infty]{} \infty
$$

if the residue function $\beta(s)$ satisfies (in the spin $less case)³$

$$
\beta(s)_{s \to \infty} e^{-b \alpha(s)}.
$$
 (2)

A model implying a high-s behavior

$$
\beta(s) \xrightarrow[s \to \infty]{} \text{const}[\alpha(s)/e]^{-\alpha(s)}
$$

was suggested by Jones and Teplitz⁴ on the basis of incorporating the Mandelstam symmetry' into the theory. The aim of this communication is to correlate an analog of the requirement (2) for the πN case with experiment by relating the appropriate β to the partial widths of the known $B = 1$, $Y = 1$ resonances and attempt to see any tendency for (2) to be fulfilled.

We first extend the work of Khuri¹ in a straightforward way to the πN case, and write a bound analogous to (2) on the residue functions defined by

$$
\beta(\sqrt{s}) = \lim_{J \to \alpha(\sqrt{s}) + \frac{1}{2}} [J - \frac{1}{2} - \alpha(\sqrt{s})] f(J, \sqrt{s}), \qquad (3)
$$

with

$$
\mathrm{Im} f(J, \sqrt{s}) = k |f(J, \sqrt{s})|^2 \tag{4}
$$

for J = half integer, $(m + \mu)^2 \le s \le (m + 2\mu)^2$, and $4k^2 = s - 2(m^2 + \mu^2) + (m^2 - \mu^2)^2/s$.

Subscripts on β , α , and f supplying isospin, parity, and signature are implicit.

By explicating the contribution of a given

Regge pole to the scattering amplitudes $f_1, f_2,$ ⁶ me can arrive at the proper prelude to the requirement (2) on β :

$$
1\beta(\sqrt{s})P_{\alpha(\sqrt{s})+1}'(z)
$$

$$
\pm \beta(-\sqrt{s})P_{\alpha(-\sqrt{s})+1}'(z)| \leq s^{-\infty} \atop z \text{ fixed}} S^N,
$$
 (5)

which yields the analog of (2) (assuming no cancellations),

$$
\ln \beta(\sqrt{s}) \leq -\text{const}\alpha(\sqrt{s}). \tag{6}
$$

$$
\alpha \to \infty
$$

From Eqs. (3) and (4) we may derive the following relations at a resonance of mass $\sqrt{s_R}$:

$$
\beta(\sqrt{s_R}) = \left[\frac{d \operatorname{Re}\alpha(s)}{ds}\right]_{s = s_R} \frac{xs_R^{1/2}\Gamma}{k(s_R)},\tag{7}
$$

where Γ = total width of the resonance, and x $=\Gamma_{\text{elastic}}/\Gamma$ = elasticity of resonance.

Let us examine the logarithm of β as given by Eq. (7). The variation of $\ln(s_R^{-1/2}/k_R)$ is small compared to that of $\ln x$ in the energy range considered, and of course goes to zero as $s \rightarrow \infty$. Experiments⁷ do not seem to indicate large variation of Γ with the resonance, and hence even less of $ln\Gamma$.

Finally, present indications are that $d\alpha/ds$ \simeq const,⁸ at least in the energy range considered. Hence Eqs. (6) and (7) yield the approximate requirement

$$
\ln x \underset{\alpha \to \infty}{\leq} -b \alpha(\sqrt{s}), \quad b > 0. \tag{8}
$$

We will test this condition for values of α in the higher resonance region.

In Fig. 1 are plotted the presently known or estimated values of lnx for the N_{γ_1} and Δ_{δ} tra-
jectories against values of $\alpha = J - \frac{1}{2}$ assumed by Barger and Cline⁸ in their Chew-Frautschi plots. The values of x are those given in Column 6 of Table I, Ref. 8. These have been derived from measurements on elastic cross sections using the spin assignments in Ref. 8 [since

1391

FIG. 1. Logarithm of the inelasticity x as a function of $J_{\text{-}2} = \alpha$. Experimental points are obtained from Ref. 8.

cross-section measurements determine only $(J+\frac{1}{2})\chi$ for a resonance]. Where there are elasticities available as a result of phase-shift analyses, these have been averaged with the crosssection values. Note that the values of x used do not depend on the resonance-Regge-pole model used by Barger and Cline.

Since the experimental data available on the N_{α} resonances are too sparse, we have omitted them from consideration.

Results. —Although each datum point in the figure should be accompanied by large, unknown error bars, and s is hardly infinite, yet three interesting facts seem to be roughly indicated:

(1) The inelasticity x (and hence β ; see previous paragraph) falls at least as fast as $e^{-b\alpha}$, $b > 0$.

(2) There is some approximate kind of universality in the fall-off. If one insists on an average exponential fall at the highest J values, we might say that

$$
\beta \approx \text{const} \, e^{-0.8 \alpha} \tag{9}
$$

for the N_{γ} and Δ_{δ} trajectories. It is amusing to speculate whether the constancy of $d \ln \beta / d\alpha$ is correlated to the constancy of $d\alpha/ds$ for the same trajectories.

(3) The detailed behavior $\beta \sim 1/\Gamma(\alpha + \frac{3}{2})$ suggested in Ref. 4 seems to predict too rapid a drop of β , at least within the limitations of the present data. For instance, if one normalizes this form to give the observed inelasticity at α =7 for the Δ_{δ} , the inelasticity is off from the measured value by a factor of 20 at $\alpha = 9$. However, the data are still much too limited to make a definite statement.

To conclude: We have demonstrated that experimental elasticities make plausible a general conjecture of Jones and Teplitz⁴ about the rapid fall-off of $\beta(s)$, enabling α to approach ∞ and remain consistent with certain boundedness assumptions on the total amplitude. It would be of interest to test these results on the N_{α} trajectory when there is sufficient experimental information.

The author wishes to thank Professor Y. Srivastava for some discussion and a reading of the manuscript.

³The essential point in the proof is that $|P_\alpha(z)| < e^{b\alpha}$, $\alpha \rightarrow \infty$ with $b > 0$.

4C. E. Jones and V. L. Teplitz, Phys. Rev. Letters 19, 135 (1967).

 5 S. Mandelstam, Ann. Phys. (N.Y.) 19, 254 (1962).

8V. Singh, Phys. Rev. 129, 1889 (1963).

 7 See, for instance, A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Podolsky, L. R. Price, Matts Roos, Paul Soding, W. J. Willis, and C. G. Wohl, Rev. Mod. Phys. 39, 1 (1967).

 $\sqrt[3]{8}V$. Barger and D. Cline, Phys. Rev. 155, 1792 (1967).

 1 N. N. Khuri, Phys. Rev. Letters 18, 1094 (1967). 2 This bound may also be derived by demanding the existence of partial-wave dispersion relations with a finite number of subtractions. A treatment of this point will appear elsewhere.