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Eigenvalues of finite translations are used for specifying a complete set of states in

quantum mechanics. A derivation of these states is given and they are shown to be very
useful in solid-state physics.

It is shown that finite translations in direct
and reciprocal space can be chosen to form
a complete set of commuting operators in quan-
tum mechanics. ' The eigenfunctions of these
operators are found and are proven to form
a complete orthonormal set of functions. Ex-
pressions for the basic operators r and p have

been derived in the representation of these
functions.

The new complete set of functions are of the
Bloch-type with the ideal feature of being ex-
pressible in infinitely localized Wannier func-
tions. This makes them extremely useful in
solid-state physics. As an example, the prob-
lem of an electron in a periodic potential and

a constant magnetic field is considered. This
problem has attracted attention for many years,
and although the results expressed in the ef-
fective-mass approximation are very simple,
their derivation is "shockingly complicated. '"
It was pointed out' ' that the complications
come about because of the set of functions one

uses for expanding the solution of the mentioned

problem. It turns out that the functions obtained

in this paper form a very convenient set for
expanding the solutions of a Bloch electron
in a magnetic field and give us a very good

insight into the problem. This is demonstrat-

ed by deriving an equation that was used be-
fore4~'~' and shown to be very useful, but nev-
er rigorously proven.

Finite translations in real space,

T(R ) = exp(ip R ),n n'

where R„ is a Bravais lattice vector and p is
the linear-momentum operator (8'= 1), are
known to be very important in solid-state phys-
ics. By means of them Bloch functions8 gi, (r)
are defined:

T(R )( (r)=(„(r+R )=exp(ik. R )(( (r). (2)

Here k is the wave vector and it defines the
eigenvalues of the translation operators T(R„).
Relation (2) does not define the Bloch functions

completely; it only requires that they have
the form'

( (r)=exp(ik r)u (r),

where uy(r) is an arbitrary periodic function,
uy(r+ Rz) =up(r). The reason that the opera-
tors T(R~) do not define the functions gp com-
pletely is because they do not form a complete
set of commuting operators. It can be checked
that operators

T(K ) = exp(ir - K )
m m
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Here 7. is the volume of a unit cell in the Bra-
vais lattice and 6 is the Dirac 6 function.

It is easy to check that

T(R )g (r) = exp(ik R )( (r),
n kq n kq

(6)

T(K ).g (r) = exp(iq ~ K )g (r).
m kq m kq

Since the operators T(Rz) and T(K~) form
a complete set, Eqs. (6) and (7) define the
functions gyq up to an arbitrary phase factor
(see below). The vectors k and q define the
eigenvalues of the operators T(R„) and T(Km)
correspondingly. k assumes values in the usu-
al Brillouin zone, while q varies in a unit cell
of the Bravais lattice (or a Brillouin zone in
the direct lattice). The orthonormality of

(r) can be easily checked. One has

with Km being any vector of the reciprocal
lattice commute with T(R~), for any R~. This
follows from the commutation relation between
p and r and from the definition of the vectors
Km for the reciprocal lattice, ' K ~ R„=2ml
with integer l. Of course, the fact that T(R&)
and T(K~) commute does not violate the un-
certainty principle. The next statement is that
operators which are functions of r and p and
which commute with ail the set T(Rz) and T(K~)
can depend only on T(Rz) and T(K~). To prove
this statement we use the theorem that any
function of the operators r and p, f (r, p), can
be Fourier analyzed by means of the oyerators
exp(in p) and exp(ip r) with n and p running
from —~ to ~. Therefore, if f(r, p) commutes
with T(R+) and T(K~), it has to be.a function
of them only. This completes the proof that
T(Rz) and T(~) for all possible R~ and K
form a complete set of operators.

Having proven that the operators (1) and (4)
form a complete set, we now find their eigen-
functions. Instead of deriving these functions, "
we write them down and verify their correct-
ness:

y/2

(r) =
~ Q- 5(q-r-R ) exp(-zk ~ R ). (5)

uq (2v)' R„ n n

and (6)]. The former are specified by two
continuous vectors k and g, while the Bloch
functions (3) depend on the k vector and s. dis-
crete band index n that comes from the ener-
gy operator. ' In the functions (~q(r) the role
of the discrete band index is taken by the con-
tinuous vector q, a fact which is of great prac-
tical importance because it is usually much
easier to work with differential equations than
with equations in matrix form. This feature
will become apparent in the example that is
treated below.

Relation (5) can be looked at as an expansion
of a Bloch-type function (~ in infinitely local-
ized Vfannier functions. 4 This feature makes
the functions gyq extremely useful in describ-
ing the dynamics of Bloch electrons in exter-
nal fields. 4

As was already mentioned, Eqs. (6) and (7)
do not fix the phase of g~q(r). The choice that
was made in (5) turns out to be very convenient
because the operators r and p have then the
following simple form in the kq representation".

r = is/8k+ q,

p i s/Bq.

This completes the construction of a new
representation in quantum mechanics: a corn-
plete set of commuting operators (1) and (4),
a complete set of functions (5), and the repre-
sentation of the basic operators r and p. Al-
though during the construction we have explic-
itly used vectors R& of a Bravais lattice and
vectors Km of a reciprocal lattice which are
concepts in solid-state physics, the represta-
tion is not necessarily related to solids because
the two lattices mentioned can always be for-
mally defined. There is, however, no doubt
that this is a natural representation for prob-
lerns in solids.

As an example let us derive an equation for
a Bloch electron in a magnetic field. %e start
with the Schrodinger equation in the r repre-
sentation for the symmetric gauge A= ~[Hxr]:

((2m) '[p+ (e/2c)Hxr]'+ V(r))g(r) = et/i(r), (11)

f&, ,~(r) P (r)d'~ = 5(k'-k) 5(q ' -q).k'q' kq

It is interesting to compare the functions

g~q(r) with the Bloch functions (3). Both of
them are Bloch-type functions [relations (2)

(8)

g(r) = fC(k, q)g (r)d%d'q
kq

(12)

where H is a constant magnetic field and V(r)
is the periodic potential. The function g(r)
can be expanded in the complete set of functions
~aq('):
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From the definition (5) of gy& it follows that

C(k+ K, q) = C(k, q) and C(k, q+ R ) = exp(ik .R )C(k, q), (13)

2

Bq 2c(2m) ' -i=+ —8&& q+ i= + V(q) C(k q) = eC(k q),Bk
(14)

where C(k, q) are Bloch-type functions satis-
fying relations" (13). The difference between
C(k, q) and the ordinary Bloch functions (3)
is that in the former, the vector k is no lon-
ger a constant of motion but appears as a vari-
able in the equation.

In comparing Eq. (14) with the equation one
obtains in the effective-mass approximation
(EMA) by expanding ((r) in (12) not according
to gy&(r) but in regular Bloch functions g~y(r),
one finds that the band index which leads to
a coupled set of equations in the EMA is re-
placed in (14) by a continuous variable. An equa-
tion of type (14) was first predicted by Wannier
and Fredkin~ from a heuristic argument and
very interesting results were drawn from it.
In more recent publications'~' Eq. (14) itself
was constructed (up to a phase transformation)
and shown to be useful for deriving the EMA
in an extremely simple way. However, only
now having an exact proof of Eq. (14), it be-
comes clear what is the meaning of the vari-
ables in this equation and what is the connec-
tion between C(k, q) and the wave function in
the r representation.

The example above shows that by use of the
kq representation, the Bloch part of the Ham-
iltonian and the part that corresponds to the
motion in the potential of the perturbation (the
magnetic field in this example) appear in the
equation side by side with a coupling between
them. As is known, this feature of having
motions separated corresponds to the gener-
al behavior of electrons in perturbed crystals.
It follows, therefore, that the representation

constructed in this paper is of very great use
in solid-state physics.
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