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where &uc =eH/mc and x0= Py/m& e is the —or-
bit center. We wish to calculate the evolution
operator U for the Hamiltonian (1), where

It) = UIi); dU/dt = —PKU; P =i/K (2)

It) is the state at the time t ~0, given that the
initial state (t =0) is li). Since Pz and P& com-
mute with X, they are constants of motion and
will be taken equal to zero for convenience.
This makes x = 0, and we then have the simple
one-dimensional harmonic-oscillator Hamil-

The availability of intense monochromatic
radiation sources has stimulated both exper-
imental and theoretical studies of strong-field
effects in solids. The theoretical problem is
that of calculating the dynamics of charge car-
riers in strong electric fields, for which sim-
ple perturbation theory is inadequate.

We treat exactly the dynamics of electrons
in crossed electric and magnetic fields, the
electric field being spatially uniform but oth-
erwise arbitrary. We consider only the case
of spherical constant-energy surfaces and ne-
glect interband effects, thus limiting our anal-
ysis to intraband dynamics.

A recent paper by Hanamura, Lax, and Shin'

has dealt with this problem for the special case
of a sinusoidal electric field; however, their
results are unfortunately incorrect. The ex-
act solutions given here are readily understand-
able and are essentially identical to the results
one would obtain classically.

We take the magnetic field along the s direc-
tion, the electric field along the x direction,
and we work in the Landau gauge A = [0, +Hx, 0].
The Hamiltonian in the presence of a spatial-
ly uniform electric field E(t) is simply

tonian with a driving force,

X=P '/2m+ 2m+ 'x' eE(t)x-.x c

There are various methods available for ob-
taining the exact evolution operator correspond-
ing to this Hamiltonian. Louisell' has presented
a solution using normal ordering techniques,
and similar results are obtainable from the
generalized Baker-Hausdorffs formula. We

present here a simple and physical method
for obtaining U. We take U in the following
form'.

-PD Pnx PyPx -PH-'0t
U=e e e e

where e, y, and D are c numbers depending
on time and H, is the Hamiltonian of Eq. (3)
with E(t) =0. Evaluating dU/dt and requiring
that Eq. (2) be satisfied, we obtain

d'y, eE (t) dy
dt' c m ' dt'+(d P= ~

Q =m )

dD o. m(
C

dt 2m 2

Here y(t) satisfies the classical driven-harmon-
ic-oscillator equation and plays the role of the
classical particle displacement, while n(t) plays
the role of the classical momentum. It is im-
mediately obvious that a sinusoidal driving field
can only result in a time dependence of o. and

y which has frequency components at the driv-
ing frequency and at the resonant frequency.
There are no sum and difference frequencies
as has been reported in Ref. 1.

The requirement that U(0) =1 is readily met

by choosing n(0) =y(0) =D(0) =0. The correspond-
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ing solutions of Eq. (5) are

y= f E(s) since (t s)—ds,e t
mL 0 Cc

o. = e f E(s) costs (t s)d—s;t
0 c

t o.'(s)

0

m'
y'(s) ds.

(xlt) =(xi@In)

nx —Ent=e e e "p (x y).
n

Thus the center of the cyclotron orbit moves
just as does the classical particle, l(xIt) P

=cpn'(x —y), and the expectation value of the
x component of the velocity is again identical
to the classical result:

(t tt V It) = —'—
)t dx y (x—y)x mg n

Let us now examine the evolution of an initial
state In) which is an eigenstate of H0, i.e. ,
H0ln) =Enln) = (n+ 2)«e In). The x representa-
tives of these states yn(x) are well-known Her-
mite-function solutions of the harmonic oscil-
lator. The x representative of the state at time
t is simply

which diverges for large t, just as for an un-
damped classical oscillator. We also readily
verify that our evolution operator [Eq. (4)] for
the case of an adiabatically applied constant
electric field

E(t) = lim E,(1—e )
n-0+

C (t) = l(nlUl0) I2=
n

[e(t)/«, ]"
exp[ —e(t)/«],

where

e(t) = t f teE (s) exp(tre s)ds I2/2m = f I'(t')dt'.
0 c 0

Here e(t) is simply the classical energy of the
oscillator at time t. We note that at the reso-
nant frequency e(t) diverges for large t [Eq.
(9)] and Cn-0 for finite n. This simply cor-
responds to the continual excitation of the os-
cillator to higher and higher quantum states.
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generates the eigenstates of the steady-crossed-
field problem.

For the sake of completeness we include the
transition probabilities from the ground-state
Landau level to any excited state:

SD d Qx —
V (x r)+ V-(x r—)-

n dx n m

The results for a sinusoidal driving force are
readily calculated, and of particular interest
is the case of a resonant excitation E(t) =E0
x sin+et. The power absorption in this case
is simply

82+ 2tI'= ' [sin'ru t],
2m c

(8)

(9)
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