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ticular attention being paid to the longitudinal
groups at the higher q values. In spite of our
low residual background, the low scattered
intensities make the problem particularly dif-
ficult. For this reason, new growth techniques
which hopefully will allow the production of
significantly larger and more suitable orien-
ed crystals are being investigated.
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In plasma stability calculations, one usually neglects the dispersion of the velocities
of particle drifts in a curved magnetic field. If the dispersion of curvature drift veloc-
ities is taken into account, the low-frequency electrostatic drift instabilities driven by
a density gradient are stabilized by ion Landau damping in the direction of the curva-
ture drift. Examples of marginal stability curves demonstrate the importance of this
effect.

In calculations on the low-frequency electro-
static drift instability driven by a density gra-
dient of the plasma, the effect of magnetic fieM
curvature is usually simulated by introducing
fictitious gravitational forces which produce
particle drifts equal to the average drifts caused
by the curvature. ' 3 The use of a gravity means
that all particles have the same drift velocity,
and therefore there will be no Landau effect
in the direction of this drift. This approxima-
tion is justified as long as the drift velocity
of the particles due to such an equivalent grav-
ity is very much smaller than the phase veloc-
ity of the unstable mode in the direction of this

drift. However, this condition is not fulfilled
when the component of the wave vector K in
the drift direction is sufficiently large. In this
case there will be a I,andau effect for the ions
in the direction of their drift motion, in addi-
tion to the usual Landau effect in the direction
parallel to the magnetic field. In the present
work, we show that even with weak favorable
curvature, the dispersion of curvature drift
velocities provides a strongly stabilizing effect.

We consider a plane plasma slab with a den-
sity gradient in the x direction and a magnet-
ic field in the z direction. We compare the
case where a gravitational acceleration g ex-
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ists in the x direction with the case where the
magnetic lines have a curvature 1/R in the x-
z plane. The gravitational and curvature drift
velocities are both directed in the y direction.
The equilibrium distribution function for each
species of particles is taken to be
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while for curvature,

e = -(1/n)(dn/dx),
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The quantity y in the gravity case is due to
the fact that only the sum of kinetic and poten-
tial energy is constant of motion. For the drift
velocity in the unperturbed motion of the par-
ticles, we have used
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where ~c is the cyclotron frequency; and for
gravity,
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In the case of curvature, the low-frequency
dispersion relation obtained in the localized
approximation, assuming quasineutrality and
neglecting the electron Larmor radius, has
the form
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where

V . = -(a./R) V . (j = i, e),
cj j th j

In this equation,

v . =-,'(a./~)v
portional to exp( —(&u/k

II
Vth)'). Let us recall

that the imaginary part of the electron integral
destabilizes the drift instability, whereas the
imaginary part of the ion integral is stabilizing.

In the case of curvature we may, for the pur-
pose of this discussion, ignore the integration

1/~ = (1/n)dn/dx, I I I I I I I II I I I I I

and aj is the Larmor radius of the species j.
The corresponding dispersion relation for

the case of gravity is obtained from Zq. (6)
by rePlacing Vd by Vd +Vc, and in the denom-
inators of the integrals u ii'+ &uz' by 1.

In the following we shall assume I Vcj I &+ I Vdj l

and we restrict our discussion to favorable
curvature.

The stabilizing effect of the dispersion of
the curvature drift velocity can qualitatively
be seen as follows. In the case of gravity, the
denominators of the ion and electron integrals
always have a zero in the domain of integration
of u t~. Hence, both integrals have a nonvanish-
ing imaginary part which for small k is pro-
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FIG. 1. Marginal stability curves for (m;/me) t=43;
Te /Tq = 1; x/R = 0.05.



VOLUME 19, NUMBER 23 PHYSICAL REVIEW LETTERS 4 DECEMBER 1967

over u&. The denominators in the integrals
are now quadratic functions of u

~I

and have in
general two zeros in the domain of integration
of u II. The smaller of these two roots gives
the main contribution to the imaginary part
of the integral. If k& is sufficiently small, this
smaller root will be near to &u/k I~Vth and we
obtain approximately the same result as with
gravity. However, if k is large enough, the
situation changes. Since for Ik&a; I »1 the dis-
persion relation yields ~ = -k&, Vde/(2w"'k&a;),
we have ~ = -k&Vc; for Ik&a; I =R/(4v'"r) T.hus,
for all values of lk&a; I larger than this, there
will be strong ion Landau damping in the y di-
rection. But even for Ik&a; i &R/(4~'"~), when
the perpendicular Landau effect takes place
in the exponential tail of the velocity distribu-
tion, it will be enhanced with respect to the
parallel Landau effect because the drift veloc-
ity is proportional to the square of ul(. The
electron term shows the opposite behavior be-
cause ~ and k&t/~e have the same sign, so that
the imaginary part of the electron integral will
be smaller than in the case of gravity. In fact,
for small enough k~~ there will be no zero of
the denominator, and the imaginary part of
the electron integral will be strictly zero.

In order to make a quantitative comparison,
we have made machine calculations and obtained
marginal stability curves for gravity and for
true curvature. The curvature calculation has
been simplified by replacing the u&' in the de-
nominators of the integrals in Eq. (6) by 1,
keeping only u II' variable. This should be a
good approximation.

In Figs. 1 and 2, examples of marginal sta-
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FIG. 2. Marginal stability curves for (m /m )+2=43;
Te/Tg= 1; r/R = 0.1.
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FIG. 3. Marginal stability curves for (mI/me)~ 2=43;
x/R= 0.025; Te/Ti= 1.0, 0.64, 0.36.

N. A. Krall and M. N. Rosenbluth, Phys. Fluids 8,
W-88 (i965).

2J. D. Jukes, Plasma Physics and Controlled Nucle-
ar Fusion Research Onternational Atomic Energy
Agency, Vienna, Austria, 1966), p. 643.

38. Coppi, G. Laval, R. Pellat, and M. N. Rosen-
bluth, International Centre for Theoretical Physics,
Trieste, Report No, IC/66/55, 1966 (to be published).

bility curves are represented. The marginal
stability curve for zero curvature is also shown
for reference. Figure 2 clearly demonstrates
the strong stabilizing effect which was to be
expected according to the above qualitative dis-
cussion. If the ratio x/R is raised to 0.11,
the unstable region calculated with the true
curvature disappears entirely, whereas in the
calculation with gravity an important unstable
domain subsists. Only for r/R =0.25 does the
gravity calculation yield over-all stability.
In Fig. 3 the dependence of the marginal sta-
bility curves on Te/T, is illustrated.

For unfavorable curvature, the situation is
obviously reversed. Preliminary numerical re-
sults show, indeed, that the calculation with
true curvature yields a larger unstable domain
of wave numbers than the calculation with gravity.

In conclusion, this work has shown that in
regions of favorable curvature, the low-fre-
quency drift instability is less dangerous than
the gravity calculation would indicate. In par-
ticular, the short perpendicular wavelengths
are easily stabilized, in contrast to what has
been predicted by Krall and Rosenbluth. ' It
should, however, be emphasized that the results
obtained are of course quite sensitive to the
details of the distribution function.


