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BOOTSTRAP OF THE p REGGE TRAJECTORY

David J. Gross*
Lyman Laboratory, Harvard University, Cambridge, Massachusetts

(H,eceived 12 October 1967)

The amplitude for ~+7|. 7r+m is considered within a dynamical scheme proposed by
Mandelstam, based on rising Regge trajectories, the narrow-resonance approximation,
and generalized superconvergence relations. The p trajectory is shown to qualitatively
bootstrap itself. Also, a world consisting only of the particles on a vacuum trajectory
is shown to be inconsistent within this approximation.

Mandelstam has recently proposed a dynam-
ical scheme' based on approximating the am-
plitude by a finite number of Regge poles in
all channels. Crossing is imposed by gener-
alized superconvergence relations. ~~3 In the
first approximation, which is essentially the
narrow-resonance approximation (NBA), the
trajectories are assumed to be straight lines
and unitarity determines the Regge residue
up to an entire function, which can then be
approximated by a finite polynomial. This
approximation, which can be systematically
improved, allows one to derive algebraic re-
lations between a finite number of parameters.
The relations may be sufficient to determine
these parameters self- consistently.

We apply the above scheme to the amplitude
&u+m -m+7(, where only one trajectory (i.e.,
that with IG& = 1, P = -1, and negative sig-
nature, the quantum numbers of the p trajec-
tory) can contribute in all channels. ' It is shown
that this trajectory can indeed bootstrap itself,
and that one obtains reasonable values for the
Regge parameters. Within the same approx-
imation, we show that a universe consisting
only of the particles on a vacuum trajectory
cannot be self-consistent.

I. Bootstrap of the p trajectory. -In the re-
action ++m -m+m, there is one independent
amplitude which we can take to be the t-chan-
nel helicity amplitude fO& 00 (s, t), i=+1. We
have
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We define f (st) to be the amplitude which is
free of kinematical singularities in 8 and gg for

fixed t, '

f (s, t, u) = csee f 0 00 (s, t) =f (u, t, s)
t Ox, 00

The basic assumption is' that G (t) can be
approximated by one "p" trajectory

,0 (t) =S(t)i[~-~(t)],
Oz, 00

and that a(t) =at+5. Unitarity and analyticity
in the NRA then determine the form of P(t) up

to an entire function E(t),
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We now impose crossing by means of the sim-
plest finite-energy, generalized superconver-
gence relation for f (s, t), which is'

f d. (. )i~(*
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where N is a suitable cutoff, to be discussed
below. Saturating the left-hand side by the
first particle on the "p" trajectory, at J=1,
we derive the rather simple relation (Z = Sms'

This form exhibits the threshold behavior of
P(t), the nonsense-eliminating factors6 at a(t)
= 0, -1, and at negative half-integers, and a
scale factor e/4a (e =2.718) which makes the
left-hand side of (4) behave like t'I'E(t) for large
t. The additional factor of St is due to the com-
plication of unequal mass in the m~ channel
together with helicity flip. '

We then have that
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+m ~' = 0.67 BeV )

z(t) 4(gt+h+1)I'(at+b)it+2(l-b)/a-z](e at+5

E [(1—b)/a] Ne 4' (7)

Even without saying anything more about E (f),
evaluation of this equation at f = -b/a, o. (t) = 0,
and at t = (1-b)/a, n (t) = 1 yields

(2-3b )/a = Z ' Na = W2. (8)

In this form of a self-consistent bootstrap,
N is not arbitrary; it must surely lie above
(l-b)/a and below (3 b)/a— Sin. ce we are ne-
glecting daughter trajectories (clearly impor-
tant here near t = 0) other trajectories with
identical quantum numbers, N should perhaps
be taken lower than (2 —b)/a (where the first
resonance would lie on a parallel daughter
trajectory). We therefore choose N in the in-
terval

(3-2b)/2a & N & (4-2b)/2a.

For all values of N in this interval, (8) has
a consistent solution with 5 ~ 1 and a & 0. In-
deed, as N increases in this interval, 5 increas-
es from 0.1 to 0.6, a decreases from 2.6 to
0.34 BeV ', and m&'=(1 —b)/a increases from
0.35 to 1.34 BeV'. It is also satisfying to note
that E (f) is almost exactly a constant in the
interval —b/a ~t ~ (1—b)/a and depends only
on the trajectory n(t) independent of the value

l of N! We have

E(~) r.( (t)+2) ~

E((1-b)/a) 2 4H~

and E(t) changes by only 4% as a(t) varies from
0 to 1. Note that in this lowest approximation
we cannot say anything about the absolute val-
ue of E and, like all other bootstrap models,
have no way of knowing whether the p trajec-
tory will continue to be self-consistent when
other channels and particles are added.

It is also simple to show that this bootstrap
is stable under spontaneous breaking of isospin
invariance for the p trajectory and residues.
If we only assume charge conservation and C
invariance for the trajectories and residues,
then in the above approximation we derive three
equations of the form (7) which, in the approx-
imation of constant E's, guarantee isospin in-
variance independent of ¹

II. Bootstrap of vacuum trajectory. —The
simplest of all possible worlds consistent with
the above dynamics is described by one vacuum
trajectory n(t) = ct+d. Any bootstrap dynamics
must explain why the real world is more com-
plicated. ' If we look at the scattering of the
lowest members of such a trajectory, i.e.,
scalars with mass m' = —d/c, in the same ap-
proximation as before, we derive

F(t) [c(t—m )+2][c(t-m )+1](t—2m ) e
2 2 2 c(t—mm)

F (m') Nc 4cN (10)

where the residue is now

t (t) =I
e I'(ct+d+2)'

Evaluation of (10) at t=m' yields

1=-2m /N c,
which is inconsistent with a positive slope,
independent of the choice of ¹~

III. Conclusions. —%e have shown that appli-
cation of Mandelstam's scheme to the simplest
cases of a complete bootstrap of a trajectory
yields qualitatively satisfying results, inde-
pendent of the exact choice of the cutoff. How-

l ever, quantitatively the lowest approximation
is extremely cutoff dependent. It is not at all
clear that the inclusion of more channels and
particles will make self-consistent quantita-
tive results less cutoff dependent.

It is a pleasure to thank Dr. M. Ademollo
for valuable discussions.
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M. A. Virasora (to be published) have considered this
amplitude and saturated a finite-energy superconver-
gence relation with the p trajectory. Their approach,
however, is not one of a systematic bootstrap.
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~In this lowest approximation, we neglect all compli-
cations due to the third double-spectral function; i.e.,
cuts and fixed poles at nonsense, wrong-signature val-
ues of J.

~When one has unequal masses in one channel, and
maximal helicity flip ~, the partial-wave amplitude

Q~+(t), of definite signature +, behaves near t = 0 like

G (f) = t{--,'(~'&0)~)),

where 0, + is the leading trajectory in the s or u chan-
nels. To prove this, one assumes the existence of
daughter trajectories, so that the amplitude free of s
kinematical singularities behaves as So'( ) ~ when t =0,
and derives at t =0 behavior of G~+(t) from the Frois-
sart-Gribov definition of G~(t), as in D. Z. Freedman
and J. M. Wang, Phys. Rev. 153, 1596 (1967).

The impossibility of a scalar bootstrap has been ar-
gued within the framework of N/D equations by P. D. 8.
Collins, Phys. Rev. 136, 8710 (1964), and 139, 8696 (1966).

ERRATUM

FORWARD COMPTON SCATTERING AT HIGH
ENERGY AND THE DRELI -HEARN-GERASI-
MOV SUM RULE. Norman Dombey [Phys. Rev.
Letters 19, 985 (1967)].

Drell~ has recently pointed out that in linear-
ized theories [assumption (i)] unitarity does not
rule out extra real polymonials in the disper-
sion relations for f,(tu) and f,(e). For example,
a term cv' may be added to the right-hand side
of Eq. (10), where c is a real constant. Terms
such as these would invalidate Eq. (8) and dras-
tically change the energy dependence of (do jdQ)po
a,s (d -~. If the observed energy dependence of
forward Compton scattering at high energies (or
low energies') indicates the presence of these
terms, it will be necessary to carry out the al-
ternative experiment using linearly polarized
photons and a polarized proton target outlined in
the Letter in order to separate lf, (~) I from
~f.(~)~.
I would like to thank Professor Drell for em-

phasizing this point.

~S. D. Drell, Introductory address to the Interna-
tional Symposium on Electron and Photon Interactions
at High Energies, Stanford, California, 1967 (unpub-
lished).
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