BOOTSTRAP OF THE ρ REGGE TRAJECTORY

David J. Gross* Lyman Laboratory, Harvard University, Cambridge, Massachusetts (Received 12 October 1967)

The amplitude for $\omega + \pi \rightarrow \pi + \pi$ is considered within a dynamical scheme proposed by Mandelstam, based on rising Regge trajectories, the narrow-resonance approximation, and generalized superconvergence relations. The ρ trajectory is shown to qualitatively bootstrap itself. Also, a world consisting only of the particles on a vacuum trajectory is shown to be inconsistent within this approximation.

Mandelstam has recently proposed a dynamical scheme¹ based on approximating the amplitude by a finite number of Regge poles in all channels. Crossing is imposed by generalized superconvergence relations.^{2,3} In the first approximation, which is essentially the narrow-resonance approximation (NRA), the trajectories are assumed to be straight lines and unitarity determines the Regge residue up to an entire function, which can then be approximated by a finite polynomial. This approximation, which can be systematically improved, allows one to derive algebraic relations between a finite number of parameters. The relations may be sufficient to determine these parameters self-consistently.

We apply the above scheme to the amplitude $\omega + \pi - \pi + \pi$, where only one trajectory (i.e., that with $I^{GC} = 1^{+-}$, P = -1, and negative signature, the quantum numbers of the ρ trajectory) can contribute in all channels.⁴ It is shown that this trajectory can indeed bootstrap itself, and that one obtains reasonable values for the Regge parameters. Within the same approximation, we show that a universe consisting only of the particles on a vacuum trajectory cannot be self-consistent.

I. Bootstrap of the ρ trajectory.—In the reaction $\omega + \pi - \pi + \pi$, there is one independent amplitude which we can take to be the *t*-channel helicity amplitude $f_{0\lambda,00}^{t}(s,t)$, $\lambda = \pm 1$. We have

$$f_{0\lambda,00}^{t}(s,t) = f_{0-\lambda,00}^{t}(s,t)$$

= $\sum_{J=1}^{2} (2J+1)G_{0\lambda,00}^{J}(t)d_{0-\lambda}(Z_{t})$
= $f_{00,\lambda0}^{s}(s,t).$ (1)

We define $\tilde{f}(st)$ to be the amplitude which is free of kinematical singularities in s and u for fixed t, 5

$$\widetilde{f}(s,t,u) = \csc\theta_t f_{0\lambda,00}^{t}(s,t) = \widetilde{f}(u,t,s).$$
(2)

The basic assumption is¹ that $G^{J}(t)$ can be approximated by one " ρ " trajectory

$$G_{0\lambda, 00}^{J}(t) = \beta(t) / [J - \alpha(t)],$$
 (3)

and that $\alpha(t) = at + b$. Unitarity and analyticity in the NRA then determine the form of $\beta(t)$ up to an entire function E(t),

$$\beta(t) = \left(\frac{4q_t q_{t'} a}{e}\right)^{at+b} \frac{t^{\frac{1}{2}} [(at+b)(at+b+1)]^{\frac{1}{2}}}{\Gamma(at+b+\frac{3}{2})} E(t). \quad (4)$$

This form exhibits the threshold behavior of $\beta(t)$, the nonsense-eliminating factors⁶ at $\alpha(t) = 0$, -1, and at negative half-integers, and a scale factor e/4a (e = 2.718) which makes the left-hand side of (4) behave like $t^{1/2}E(t)$ for large t. The additional factor of \sqrt{t} is due to the complication of unequal mass in the $\pi\omega$ channel together with helicity flip.⁷

We then have that

$$\operatorname{Im}\widetilde{f}(s,t)_{s \xrightarrow{+} \infty} \frac{2\pi^{\frac{1}{2}}q_{t}q_{t'}\sqrt{t}}{s\Gamma(\alpha(t))} \left(\frac{4as}{e}\right)^{\alpha(t)} E(t).$$
 (5)

We now impose crossing by means of the simplest finite-energy, generalized superconvergence relation for $\tilde{f}(s, t)$, which is³

$$\int^{N} ds (s-u) \operatorname{Im} \tilde{f}^{(s,t)} = \frac{\pi^{\frac{1}{2}} NE(t)}{[\alpha(t)+1] \Gamma(\alpha(t))} (4q_{t}q_{t}, \sqrt{t}) \left(\frac{4aN}{e}\right)^{\alpha(t)}, \qquad (6)$$

where N is a suitable cutoff, to be discussed below. Saturating the left-hand side by the first particle on the " ρ " trajectory, at J=1, we derive the rather simple relation ($\Sigma = 3m_{\pi}^{2}$

1303

 $+m_{\omega}^{2} \approx 0.67 \text{ BeV}^{2}$)

$$\frac{E(t)}{E[(1-b)/a]} = \frac{4(at+b+1)\Gamma(at+b)[t+2(1-b)/a-\Sigma]}{Ne} \left(\frac{e}{4Na}\right)^{at+b}.$$
(7)

Even without saying anything more about E(t), evaluation of this equation at t = -b/a, $\alpha(t) = 0$, and at t = (1-b)/a, $\alpha(t) = 1$ yields

$$(2-3b)/a = \Sigma; \quad Na = \sqrt{2}.$$
 (8)

In this form of a self-consistent bootstrap, N is not arbitrary; it must surely lie above (1-b)/a and below (3-b)/a. Since we are neglecting daughter trajectories (clearly important here near $t \approx 0$) other trajectories with identical quantum numbers, N should perhaps be taken lower than (2-b)/a (where the first resonance would lie on a parallel daughter trajectory). We therefore choose N in the interval

$$(3-2b)/2a \le N \le (4-2b)/2a$$
. (9)

For all values of N in this interval, (8) has a consistent solution with $b \le 1$ and a > 0. Indeed, as N increases in this interval, b increases from 0.1 to 0.6, a decreases from 2.6 to 0.34 BeV^{-2} , and $m_p^2 = (1-b)/a$ increases from $0.35 \text{ to } 1.34 \text{ BeV}^2$. It is also satisfying to note that E(t) is almost exactly a constant in the interval $-b/a \le t \le (1-b)/a$ and depends only on the trajectory $\alpha(t)$ independent of the value of N! We have

$$\frac{E(t)}{E((1-b)/a)} = \frac{\Gamma(\alpha(t)+2)}{2} \left(\frac{e}{4\sqrt{2}}\right)^{\alpha(t)-1}$$

and E(t) changes by only 4% as $\alpha(t)$ varies from 0 to 1. Note that in this lowest approximation we cannot say anything about the absolute value of E and, like all other bootstrap models, have no way of knowing whether the ρ trajectory will continue to be self-consistent when other channels and particles are added.

It is also simple to show that this bootstrap is stable under spontaneous breaking of isospin invariance for the ρ trajectory and residues. If we only assume charge conservation and *C* invariance for the trajectories and residues, then in the above approximation we derive three equations of the form (7) which, in the approximation of constant *E*'s, guarantee isospin invariance independent of *N*.

II. Bootstrap of vacuum trajectory. – The simplest of all possible worlds consistent with the above dynamics is described by one vacuum trajectory $\alpha(t) = ct + d$. Any bootstrap dynamics must explain why the real world is more complicated.⁸ If we look at the scattering of the lowest members of such a trajectory, i.e., scalars with mass $m^2 = -d/c$, in the same approximation as before, we derive

$$\frac{F(t)}{F(m^2)} = \frac{[c(t-m^2)+2][c(t-m^2)+1](t-2m^2)}{N^2 c} \left(\frac{e}{4cN}\right)^{c(t-m^2)},\tag{10}$$

where the residue is now

$$\beta(t) = \left(\frac{4q_t^2 c}{e}\right)^{ct+d} \frac{F(t)}{\Gamma(ct+d+\frac{3}{2})}.$$

Evaluation of (10) at $t = m^2$ yields

 $1 = -2m^2/N^2c$,

which is inconsistent with a positive slope, independent of the choice of N!

<u>III.</u> Conclusions. – We have shown that application of Mandelstam's scheme to the simplest cases of a complete bootstrap of a trajectory yields qualitatively satisfying results, independent of the exact choice of the cutoff. How-

1304

ever, quantitatively the lowest approximation is extremely cutoff dependent. It is not at all clear that the inclusion of more channels and particles will make self-consistent quantitative results less cutoff dependent.

It is a pleasure to thank Dr. M. Ademollo for valuable discussions.

^{*}Junior Fellow, Society of Fellows.

¹S. Mandelstam, to be published.

²K. Igi, Phys. Rev. Letters <u>9</u>, 76 (1962).

³D. Horn and C. Schmid, California Institute of Technology Report No. CALT-68-127 (unpublished).

⁴M. Ademollo, H. R. Rubinstein, G. Veneziano, and

M. A. Virasora (to be published) have considered this amplitude and saturated a finite-energy superconvergence relation with the ρ trajectory. Their approach, however, is not one of a systematic bootstrap.

⁵L. L. Wang, Phys. Rev. <u>142</u>, 1187 (1966); Y. Hara, Phys. Rev. <u>136</u>, B507 (1966); T. L. Trueman, Phys. Rev. Letters <u>17</u>, 1198 (1966).

⁶In this lowest approximation, we neglect all complications due to the third double-spectral function; i.e., cuts and fixed poles at nonsense, wrong-signature values of J.

⁷When one has unequal masses in one channel, and maximal helicity flip n, the partial-wave amplitude

 $G^{J\pm}(t)$, of definite signature \pm , behaves near t=0 like

$$G^{J\pm}(t) \approx t\{-\frac{1}{2}[\alpha^{\pm}(0)-n]\}$$

where α^{\pm} is the leading trajectory in the *s* or *u* channels. To prove this, one assumes the existence of daughter trajectories, so that the amplitude free of *s* kinematical singularities behaves as $S^{\alpha}(0)-n$ when t=0, and derives at t=0 behavior of $G^{J\pm}(t)$ from the Froissart-Gribov definition of $G^{J}(t)$, as in D. Z. Freedman and J. M. Wang, Phys. Rev. <u>153</u>, 1596 (1967).

⁸The impossibility of a scalar bootstrap has been argued within the framework of N/D equations by P. D. B. Collins, Phys. Rev. 136, B710 (1964), and 139, B696 (1965).

ERRATUM

FORWARD COMPTON SCATTERING AT HIGH ENERGY AND THE DRELL-HEARN-GERASI-MOV SUM RULE. Norman Dombey [Phys. Rev. Letters 19, 985 (1967)].

Drell¹ has recently pointed out that in linearized theories [assumption (i)] unitarity does not rule out extra real polymonials in the dispersion relations for $f_1(\omega)$ and $f_2(\omega)$. For example, a term $c\omega^2$ may be added to the right-hand side of Eq. (10), where c is a real constant. Terms such as these would invalidate Eq. (8) and drastically change the energy dependence of $(d\sigma/d\Omega)_{0}^{\circ}$ as $\omega \rightarrow \infty$. If the observed energy dependence of forward Compton scattering at high energies (or low energies¹) indicates the presence of these terms, it will be necessary to carry out the alternative experiment using linearly polarized photons and a polarized proton target outlined in the Letter in order to separate $|f_1(\omega)|$ from $|f_{2}(\omega)|$.

I would like to thank Professor Drell for emphasizing this point.

¹S. D. Drell, Introductory address to the International Symposium on Electron and Photon Interactions at High Energies, Stanford, California, 1967 (unpublished).