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We have studied how a small time-reversal —noninvariant term in the Hamiltonian of
a complex system affects the theoretical statistical distributions of its energy levels.
We find that the major effect on the nearest-neighbor spacing distribution is in its
shape near the origin. Thus, it is concluded that experimental observation of such a
term by measurement of statistical distributions of energy levels is very difficult.
However, one can find an upper bound to the strength of such a perturbation by such
measurements.

There has been much success in describing
the statistical properties of energy spectra
of complex systems using ensembles of ran-
dom matrices. ' Orthogonal ensembles (which
are applicable to time-reversal-invariant sys-
tems) predict spacing distributions which agree
quite well with experiment. ' In particular,
such ensembles predict that the nearest-neigh-
bor spacing distribution is linear in the spac-
ing near the origin. Unitary ensembles (which
are applicable to time-rever sal-noninvariant
systems) predict a quadratic dependence near
the origin. A question of. current interest is
whether or not a small time-reversal-nonin-
variant part of the system Hamiltonian will
manifest itself in the spacing distributions in
an observable way. '

To investigate this we shall examine an or-
thogonal Gaussian ensemble of half-width n
with a random, unitary, Gaussian perturbation
of half-width y

' '. The joint distribution for
the matrix elements is then

p(H, y, n) = q'(y)rl(n) f exp[-y Tr(H-H. )']

xexp[-n TrH, ']dH„

The integrals over Hp are easily performed
and yield

p(H, y, n) =" " exp[-n' TrH']q'(y) q(n)
n(y+ n)

x exp[-2y' g H . ."],
2&g

where

n' = ny/(y+ n),

y'=y'/(y+ ),

H . .' = Im(H . .) .
ig 2

The factor exp(-n'TrH') describes the ordi-
nary unitary Gaussian ensemble with a trivi-
al change in scale. The other exponential fac-
tor yields new effects.

The joint eigenvalue distribution can be cal-
culated exactly for N =2 by parametrizing the
rotation matrix with the Cayley-Klein param-
eters. The result of this calculation is

P(&, y, n)

nr(n/2+)1/2 [g ~ ~
C,([1 I(E ~ )2]1/2)

(6)

(7)

(8)

where

4N(N-1)( / )4N(N+ 1)

& (,) =2'"~-"(y/ )'"',

x exp[- n'(E, '+ E22) ],

where 4 is the error function. The nearest-
neighbor spacing distribution is easily calcu-
lated from (9) and is

(9)

dH =Q(dH). ..
0 ig0

(4)

As is customary, we have chosen a represen-
tation in which the H, are real, and have assumed
H and Hp to be N &N, with the limit of N approach-
ing infinity to be taken at some later point.

S(S,y, n) =(nn )'Se ' e((-,'y S )'). (10)

It is easily seen that this expression is approx-
imately the orthogonal result in the region y'S'
»2, and approximately the unitary result in
the region y'S'«2. If n/y«1 (i.e., the per-
turbation is small), the spacing distribution
is quadratic in S for S2 «(Sn/wy)S2 and linear
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if 83'/m»S'» (8n/wy)S', where F is the average spacing for the unperturbed distribution (i.e. , 3'
= m/4n ). Similar results will be shown to be valid for the N-dimensional case.

For the N-dimensional case we consider only the limit n/y «1. Thus, we can use a cluster-type
approximation for the last exponential factor occurring in (5). To first order in small quantities,

—'N(N-1),
ex [e-2 yQ yy"]=(,) e())')+ g ])( ) exp( —ey'a ")e )H') —e)))')I

i&j m & fI

where

~( )=n~( . )
2j '

2&j
(12)

f dH = (2y'/~) exp(-n' TrH')

x f dx f)(G') exp(-2y'x')dH,

where

G. . =H . .-ix(f) .f) .-f) .f) .),ij ij mi nj mjni' (i4)

dH=(g dH. .')( g dH. .'),
2j 2j '

2~j k&l

and f)~n(H') has the factor for H~z' missing.
The terms with f')(H') obviously yield the orthog-
onal result [with half-width (n') 'I']. The con-
tribution to the joint eigenvalue distribution
from terms with a delta function missing can
be obtained by making an expansion in powers
of 1/y'. A typical term can be written (with
some multiplicative constants omitted) as

To order x' (i.e., to order 1/y' in the asymp-
totic expansion) it can be shown that J(E';E)
-1. The form of the remaining Jacobian and

resulting integration over the rotation param-
eters are well known since G is real, and thus
corresponds to the orthogonal ensemble. Thus,
to order 1/y' the first correction term vanish-
es and the joint eigenvalue distribution to this
order is proportional to the orthogonal Gauss-
ian result with the scale factor o. '. Hence,
in the region Ny'S'» 1, the nearest-neighbor
spacing distribution is, to order 1/y, propor-
tional to the orthogonal distribution.

The behavior of the nearest-neighbor spac-
ing distribution near the origin (i.e., Ny S «1)
can be obtained by examing the formal expres-
sion for the joint-eigenvalue distribution ob-
tained from (5). This can be written as

p(E, y, n)

e xp[- nQ. E.'] g (E.-E.)''( ) (n)
g(y+ n) i i i j

x fdpw(y) exp[-2y' Q B (E -E )2], (17)
u&l

" '
with H2j =ReHij and Gij Gij We now change
variables from the B2j' and H2' to the eigenval-
ues of H and the rotation parameters cpi which
diagonalize G.' The result of this can be ex-
pressed in the form

f dH

2y'
exp( n' TrH') f-dx exp(-2y'x') f)(G')

x J(G;E',y)J(E';E)dcpdE, (16')

where J(x;y) is the Jacobian of the transforma-
tion from x to y and where Fz and E2' are the
eigenvalues of H and G, respectively. An ex-
pansion of J(E'; E) in powers of x can'be obtained
by treating H-G as a perturbation on G and us-
ing nondegenerate perturbation theory. Such
an expansion is valid if Ny(Ei-E&)» 1, i &j .

where

B =(ga. a. )'+(ga b )'. .

Here aij and bij are the real and imaginary
parts, respectively, of the unitary matrix which
fiiagonalizes H. They have been parametrized
:in terms of some variables yi with weight func-
tion w(y). It is easily seen that the factor in-
volving the integration over the q is not zero
and is finite at the point S = 0, where S is some
typical eigenvalue difference. Thus, the near-
est-neighbor spa, cing distribution is to a first
approximation quadratic near the origin. In
conclusion, the nearest-neighbor spacing dis-
tribution is approximately the unitary result
(i.e., quadratic) if S' & (n/y)S2 and approximate-
ly the orthogonal result if S'& (n/y)S', where

1255



VQLUME 19, NUMBER 21 PHYSICAL REVIEW LETTERS 20 NovEMBER 1967

S'-1/&o ' is the squared average spacing for
the unperturbed ensemble.

Thus, the major effect of the presence of
a small time-reversal-noninvariant term on
the spacing distribution is a change in shape
near the origin. Since this is a region of mi-
nor probability, and hence large statistical
error, it would appear that observation of such
a term using statistical methods is very dif-
ficult. However, if the experimental measure-
ments reveal that the distribution near the or-
igin is linear for 8 & So, where So is the small-
est spacing with good statistics, one can con-
clude that the noninvariant term, if it exists,
is at least S,/S times smaller than the invar-
iant term.
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Here we treat 6 as though it were a member of a
unitary ensemble. Thus, there are N(N —1) param-
eters q.. The delta functions 6(G') insure that 6 is

1real (orthogonal) and 2N(N-1) of the p integrations
are trivial.
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Explicit calculations show that daughter trajectories are very model dependent. It is
therefore necessary to be cautious in applying Lorentz symmetry when the energy is not
zero.

At zero energy, the Regge poles obtained
from the manifestly covariant Bethe-Salpeter
equation occur in families; for each "mother"
trajectory with a given l(0), there is a sequence
of "daughters" with l„(0)= l(0)—n. ' ' At s = 0

(s is the squared energy) the odd daughters
have residues whose sign is "wrong, " mean-
ing that if the trajectories rise through phys-
ical values without this sign changing, the as-
sociated particle would be a "ghost. " This
sign problem is implicit in the work of Freed-
man and Wang' and had been emphasized even
earlier by Nakanishi' (see also Ciaffaloni and
Menotti'). An additional symmetry occurring
for scalar particles of equal mass leads to
several special features; in particular, the
odd daughters are actually uncoupled from the
scattering amplitude. It is to be expected, for
reasons discussed below, that the Regge tra-
jectories may, in the general case, behave
quite differently from those previously report-
ed for scalar particles' with M, =M, or in the
nonrelativistic theory, ' and we undertook some
explicit calculations with two unequal scalar
particles to demonstrate this.

We write the Bethe-Salpeter equation for an
amplitude of angular mementum l in the sym-
bolic form

where B(l, s) is a fourth-order partial differ-
ential operator in R and n depending paramet-
rically on l and s, R is the four-dimensional
relative distance, and t =R cosa is the contin-
uedo relative time. We assume that the inter-
action is' a superposition of Yukawa potentials.
Equation (1) is self-adjoint with the prescrip-
tion

where the reflection t --t makes the norm in-
definite in sign and thereby leads to the possi-
bility of ghost solutions' as well as to unfamil-
iar level-crossing behavior. We represent
gl as a superposition of terms of the form

& l+1(
)

+nl k+pR yR cosa . l—


