
Voz. UMz 19, NUMszR 21 PHYSICAL RKVIKW LKTTKRS 20 NovzMazR 1967

ence Foundation.
)Present address: Physics Department, California

State College at Long Beach, Long Beach, California.
K. A. Pickar, dissertation, University of Pennsyl-

vania, 1966 {unpublished).
L. Q. Grimes and L. C. Jackson, Ph;l. Mag. 4,

1346 (1959).
3K. F. Schoch, Advances in Cryogenic Engineering,

(edited by K. D. Timmerhaus (Plenum Press, Inc. ,
Neve York, 1961), Vol. Vl, p. 65.

V. M. Kontorovich, Zh. Eksperim. i Teor. Phys. 30,
805 (1956) [translation: Soviet Phys. —JETP 3, 770
{1956)].

5R. Meservey, Phys. Rev. A133, 1471 (1964).
6D. Hemming, Bull. Am. Phys. Soc. 8, 91 (1963).
VP. 7V. Anderson, Rev. Mod. Phys. 38, 298 {1966).

NONLINEAR INSTABILITIES IN BEAM-PLASMA SYSTF-MS

R. E. Aamodt* and M. L. Sloan*
Department of Physics, University of Texas, Austin, Texas

(Received 7 August 1967)

The possibility of nonlinear interactions in-
ducing instability in plasma devices contain-
ing available free energy has been examined
with a number of model equations. '& The dif-
ficulty in predicting instability with such mod-
els is that stability or instability is determined
by finding the sign of a sum of large numbers
with different signs and, hence, is critically
subject to the model chosen. This method has
led to a number of misleading results. In this
Letter we derive a necessary and sufficient
condition that the usual three-wave resonant

scattering equations' possess unbounded solu-
tions for arbitrarily small perturbations which
does not rely on such models. For a number
of interactions this condition is easy to eval-
uate, and in particular, it follows that the non-
linear resonant interactions of the usual beam-
plasma modes in homogeneous plasmas gener-
ate large amplitude fluctuations even for wave-
lengths which are linearly stable.

The standard weak turbulence equations' '
describing the three-wave resonant interaction
of longitudinal modes in a homogeneous plas-
ma can be written as

—k k'' k"

Here Nl, =(8v) )Be/B~y~l~Ek I is the number density of plasmons with wave number k and of
the type "o,"where "n" labels the different eigenfrequencies uk which exist for a given k; tEk+ p
is the square of the electric field amplitude of the "n" mode; I Vy~i~ii &

l is a matrix element cal-
culated from stationary plasma functions which is symmetric under interchange of the indices (k, n),
(O', P), (k", y); e(k, +) is the linear dielectric function which is zero for v =»; and Sp is the sign
of (Be/B&u)~ =»n. To find a stability criterion one needs only the integral conditions which follow
from (1):
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for all time if

kr k» k» (Sb)

for all (k, n), (k', P), (k", y) which satisfy

(d +(al +(d = 0&

k+k'+k" =0. (3c)

S S, Sk„

~- k k'

=0

for all resonating triplets. By the previous
statement one now concludes that all N's remain
bounded only if the N's evolve to a state Nk™

Mk, where Mk ls defined as any positive
(or zero on a set of measure zero) bounded
solution of

r
k ki kll

k k'' k"

=0

for all (k, o), (k', P), (k", y) satisfying (3c). By
(1) it is evident that if the Mk exist, they are
equilibrium plasmon densities.

Equation (Sa) implies the usual laws of con-
servation of energy and momentum if bk is

Equation (2) states that the plasmon entropy
is nondecreasing, and in addition (if k space
is assumed of finite extent) it shows that if
all N's remain bounded and are initially non-
zero, then Nk remains nonzero except pos-
sibly for a set of measure zero in the limit
of continuous k. Equation (2) also proves that
all N's remain bounded only if the system reach-
es a state such that

chosen equal to sk~(dk+ and sk+k, respective-
ly. These particular forms identically satis-
fy (3b) by (3c). More generally, if (Sb) possess-
es any positive bounded solution, then (Sa) re-
stricts the Nk~ to be bounded for all time.
However, the M's are the most general posi-
tive bounded solutions to (Sb), and therefore
the existence of the Mk+ implies that (1) has
only bounded or stable solutions.

From this discussion it follows that a nec-
essary and sufficient condition that (1) have
only bounded solutions is that an Mk exists.
It is apparent that a sufficient condition that
(1) have unbounded solutions is that for any
(k, o), (k', p), (k", y) satisfying (3c), the Sk~,
Ski~, Skli1' have the same sign. On the other
hand, a sufficient condition for (1) to have on-
ly stable solutions i.s that a frame of reference
exist where all Sk~~k~ or k;Sk~ are of the
same sign. Said another way, if a frame of
reference exists in which all waves have pos-
itive (or negative) energy, or a particular com-
ponent of momentum is positive (or negative)
for all interacting waves, then the system is
stable.

For homogeneous plasmas with cold beams,
the dispersion relations are such that the sim-
plified sufficiency conditions determine the
stability properties of the system. For exam-
ple, for electron beams in a plasma without
a magnetic field,

e(k~ co) = 1-2(d [((d-ku) + ((8+ku) ]~

where &ape is the total electron plasma frequen-
cy, and k is the wave-vector component along
the direction of the beams. For k'&kc'=(dpe /
u', the modes of (6) are linearly stable and
the methods of weak turbulence are applicable.
For such wave vectors the four solutions of
(6) are

(u '= -(u '= (k/Ik i)[—'(u '+(ku)'+ —'((u '+8k'u'(u ')"']'"
k k 'pe pe pe

3 —(k/ik J)[Li~ 2 y(ku)2 i(~ &+6k7u7~ 2)&&2]&&2
k k 2 pp 2 pe pe

1 3 2=
cok + 40k f (dk fI (vb)

is possible for k &k~, k''&k~, k" & -k~ and here

Solving the resonance condition (Sc), it can
be shown that many interactions can take place
where all the s's are positive. For example,
the interaction

Sk'&O, Ski'&O, SkI"&0. Hence (1) has unbound-
ed solutions. If the system is shortened to ex-
clude the longer wavelength modes, all reso-
nances with all s's of the same sign cease for
k2) 1.3k~2. For shorter systems only the modes
~' and ~' and, separately, ~' and ~4 resonant-
ly interact. As energy is separately conserved
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for each set and since, in the frame of refer-
ence moving with velocity+u, &' and w' are
both positive energy while +3 and co4 are both
negative energy in a frame of reference mov-

ing with velocity -u, it follows that the nonlin-
ear set of equations has only bounded solutions
for these short systems.

For a weak ion beam system in a strong mag-
netic field and for o//o/pe «kll ~De,

e(k, o/)

= -&u =k (m/M)' V (I+k'A. ')-'"
k k I) e De

(8b)

The interaction ~y'+ vy i'+ cop «2 = 0 is nonlin-
early unstable but, as the system is shortened,
stops resonating for k~~

& o/pi/u. The coupling
up'+~y '+cup '=0 is also unstable but has a
critical wave number of k~t~2o/pi/u. For short-
er systems only modes co' and u' interact, but

they are both positive energy in a frame mov-

pi
k'A. ' k' o/' (o/-k u)'

De

Here XDs =Vs/o/ps is the electron Debye length,

okapi
is the ion plasma frequency, g«1 is the

ratio of the ion-beam density to the total den-
sity, k~~ is the wave vector along the field, and
k'=k~I2+k~'. All modes of (8a) are linearly
stable if Ve'»u'& (m/M)Ve'. However, again
many resonances induce nonlinear growth.
For beam velocities in the linearly stable re-
gime, the four solutions are

c/ '=k u+k o/ g'"(k'+ I/x '-o/ '/u')
pi De pi

2 k u k ~ ~1/2(k2 + I/g 2 2/u2) —1/2

pi Ds pi

ing with velocity u, and hence in a short sys-
tem the interactions of the low-phase-veloci-
ty mode are completely stable. However, in
addition to these low-phase-velocity modes,
(8b), this system has linearly stable electron
plasma oscillations

o/
+ =+(k o/ /k)[1+2(kX )'+ ~ ~ ~ ).

k J} pe De

A resonance of the form coI, '+~I I++~~Ii'=0
can take place and is nonlinearly unstable.
This interaction is only stopped when the (dy+

mode becomes ill defined, i.e., kADe=1; how-

ever, the matrix element ( VkklkII' p is extreme-
ly small for this resonance and associated non-
linear growth rates are initially slow.

Similar exterisions of the instability regions
by resonant scattering occur for other beam-
plasma systems. It is apparent that these ex-
tensions are important for the understanding
of basic experiments and in the theory of the
structure of shock waves in collisionless plasmas.
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The majority of electroluminescence studies
undertaken have been on semiconductors. '
The theories put forth to explain the excitation
of this phenomenon involve (1) the injection
of charges into the crystal by the electrodes, 2

(2) direct field ionization of impuritiess or of
the valence band itself, 4 and (3) the accelera-
tion of charged carriers to optical energies. '~~

We make use of the first and last of these mech-

anisms to explain the intrinsic electrolumines-
cence of pure KI at 77'K.

A voltage of 2500 V rms at 500 cps was ap-
plied across a crystal 0.5 mm thick using one

Ag and one In electrode. The emitted light was
observed perpendicular to the field at 1000
cps by using a phase-sensitive amplifier. The
signal was found to be 90' out of phase with
the reference frequency. The resulting spec-


