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in anthracene has been reported, through pump-
ing with unpolarized light; this comes about
because of selective de-excitation of higher
bands to the magnetic states of an excited trip-
let, and is a different mechanism from that
considered here.

(E) Liquids. —The basic ideas of the above
ENPOPS schemes can be readily extended to
liquids containing paramagnetic ions or other
magnetic species, provided that U, and U, can
be made sufficiently different (this usually re-
quires large spin-orbit coupling), and that the
oscillator strength and available light intensi-
ty combine to give U-T~e ', required for op-
tical saturation. The nuclei of interest are
those in the abundant diamagnetic solvent mol-
ecules, which have a rapidly fluctuating inter-
action with the ion, either of the hfs form I ~ A
~ 8 or of dipole-dipole form. The first case
is similar to (A) above except that the hfs is
averaged out. However, M), »~3 if the hfs fluc-
tuation is nearly isotropic, and we conclude
that if nuclear-spin memory exists, then pump-
ing the liquid with circularly polarized light
will yield the nuclear polarization of Eq. (3).
For the dipolar case in liquids av, :res:M 4 = 2:12:3
and one should find a reversed nuclear polar-
ization.

It can also be shown that ENPOPS should

apply to magnetically concentrated substanc-
es which display an Overhauser effect.

Experiments to test these various cases are
underway at the University of California, Berk-
eley, California. It is a pleasure to acknowl-
edge a stimulating discussion with Professor
P. L. Scott, leading to Case (B) above.
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THICKNESS OF A ROTATING LIQUID-HELIUM FILM*
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The thickness of a rotating liquid-helium film has been measured at various angular
velocities and temperatures. The results are consistent with hydrodynamical calcula-
tions assuming that the superfluid component remains at rest and that the normal com-
ponent alone rotates. The failure to induce rotation in the superfluid component is in-
terpreted as evidence that vortex lines with their axes perpendicular to the film are dif-
ficult to create.

Rotation experiments fall into several class-
es. If a bulk sample of helium is used, the
critical velocity is very small and its effects
are difficult to observe. Experiments in which
flow takes place in packed powders or their
equivalent obtain large critical velocities but
have complex geometries. In such experiments
rotation probably takes place without the pres-
ence of Onsager-Feynman vortex lines. A ro-
tating helium film has the advantage that it
combines the simple geometry of bulk-liquid

experiments with critical velocities of the or-
der of magnitude of 50 cm/sec. '

The interesting question is whether or not
the film rotates with the surface on which it
is formed. If the film is brought into motion,
then the surface of the film should curve for
the same reason that a classical liquid in a
rotating bucket has a parabolic shape. For
the film, however, the change in the surface
is of the order of Angstroms instead of centi-
meters because the force field is not gravity
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but the van der Waals forces between the he-
lium atoms aod the wall. We have used a vari-
ation of Jackson's2 optical technique to mea-
sure the change in film thickness caused by
rotation. The film thickness is measured near
the center of a rotating cylinder where the ef-
fect is expected to be a maximum. The rotat-
ing cylinder, which is partially immersed in
the helium bath, forms the rotor of a super-
conducting motor similar to that developed
by Schoch. ' The use of a superconducting mo-
tor eliminates the heat which would be produced
by bearing friction and motor control currents.
The surface on which the film thickness is mea-
sured is a gold film which has been evaporat-
ed onto Pyrex glass.

The expected magnitude of the change in film
thickness can be calculated by solving the two-
fluid hydrodynamical equations using methods
similar to those of Kontorovich4 and Meservey. '
In solving the hydrodynamical equations we
have assumed a particular class of velocity
patterns for the superfluid and normal compo-
nents of the film:

V =R(d& 5 = R40
g S

This includes a motionless superfluid (~'= 0)
and a classically rotating superfluid (~ = ~')
as a special cases. The solution is

cv p R co
sgIJ-
p 2

p R(d
n

p 2

= const,

where d = film thickness, 8 = height of the film
above bulk liquid, and n = a constant. The term
o/d represents all the film-thickness-depen-
dent energy terms. Its largest contribution
comes from van der Waals forces. When co

=v'= 0, Eq. (1) becomes the profile equation
of the static film thickness. The van der Waals
term n/d& can then be obtained from measure-
ments of the static film thickness. The constant
in Eq. (i) is the chemical potential and may
be evaluated by considering the point at whi. ch
the film joins the bulk-liquid level. At this
point II=0, d=~, and R=R =the radius of the
cylinder. The geometry of the rotating cylin-
der and film are illustrated in Fig. 1.

The behavior of the superfluid and normal
components can be separated experimentally
by varying the temperature. At low tempera-
tures most of the film is superfluid, while near
the ~ point most of the film is normal. The
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FIG. 1. Curvature of a rotating film.

two parameters that affect the results are the
bath height (II) and the temperature (T). By
holding the bath height constant and varying
the temperature we were able to study the rel-
ative behavior of the two components. The re-
sults are given in Fig. 2. Because we expect
the rotating film to be thinner, we have plot-
ted decreases in film thickness in the positive
direction. The effect of rotation on the film
thickness is a monotonically increasing func-
tion of the temperature. At the lowest temper-
ature measured, no change larger than the ex-
perimental error occurs. The fact that the
results are temperature dependent shows that
the superfluid and normal components do not
behave in the same way. The null effect at the
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FIG. 2. Change in film thickness versus angular ve-
locity at constant bath height H= 0.49 cm for various
temperatures.
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lowest temperature is consistent with the su-
perfluid remaining at rest (vs=0). If the su-
perfluid component remains at rest and the
normal component rotates classically, Eq.
(1) can be rewritten as

d=323X 10 '(H+b, H) '" cm,

where

(2)

p co

~H= ——(a '-Z').
p 2g c (3)

We have used Hemming's static film-thickness
measurements on gold' to evaluate the van der
Waals term n/d+. For small changes in b, H,
Eq. (2) can be expanded to give the change in
film thickness,

1p (d

(H -a ).0 2 2

4 p 2gH c (4)
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FIG. 3. Change in film thickness versus ps/p at con-
stant bath height II=0.49 cm and constant angular ve-
].ocity u =200 rpm.

The temperature dependence should be approx-
imately that of p /p. This conclusion is inde-
pendent of the —,

' power law because p„/p appears
only as a multiplicative constant. The change
in film thickness at 200 rpm versus p„/p is
plotted in Fig. 3. The temperature dependence
of our results is the same as p„/p within the
accuracy of the experiment. All of our results
are consistent with the superfluid remaining
at rest (vs =0) and the normal component ro-
tating (v„=Rre).

The result that the normal component rotates
is, of course, quite expected. The superflu-
id results are more surprising. Rotation ap-
parently has no effect on the superfluid despite
the fact that the peripheral velocity of the cy-
linder exceeds the film-flow critical velocity

by more than a factor 2. Also, the film on
the cylinder is connected to the bulk liquid so
that the critical velocity is always exceeded
at a low height, where the film is thick and
the critical velocity is small. We believe that
the explanation of this result is contained in
some remarks by Anderson. He points out
that in the critical-velocity expression (v -Il/
mD), the relevant dimension D for vortex lines
with their axes perpendicular to the film is
the distance to the nearest wall measured per-
pendicular to the vortex core, rather than the
film thickness. The critical velocity for this
type of vortex line should be about 10' small-
er than that for other types of vortices. Large
critical velocities are observed experimental-
ly; so he concludes that this type of vortex
line does not exist in the film. Qnly vortex
lines of this type can bring helium into rota-
tion. Qther types of vortices will be created
when the observed critical velocity is exceed-
ed, but these cannot simulate classical rota-
tion.

Another process which might be important
in preventing the formation of the equilibrium
array of vortex lines needed for rotation is
pinning of vortex lines. Vortex lines are well
known to have a tendency to stick to walls in
bulk helium. The core of a vortex line is still
small compared with the film thickness; so
we expect the pinning force in the film to be
nearly the same as in bulk liquid. The disturb-
ing force which acts to free pinned vortices
is due to the relative motion of the rest of the
liquid and is proportional to the length of the
vortex line on which it acts. Since a vortex
line in bulk helium is about 10' times longer
than a vortex line in the film, it should be much
more difficult to free a pinned vortex in the
film. We might therefore assume that perpen-
dicular vortex lines are readily formed where-
ever the velocity of the rotating disk exceeds
the critical velocity, but that these lines are
firmly pinned and are not able to distribute
themselved throughout the film. Although this
situation would not lead to solid-body rotation,
it can be shown that it would produce changes
in film thickness that could have been readily
detected at the lowest temperature in our ex-
periment. We conclude that not even pinned
perpendicular vortex lines were created in our
experiment.
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The possibility of nonlinear interactions in-
ducing instability in plasma devices contain-
ing available free energy has been examined
with a number of model equations. '& The dif-
ficulty in predicting instability with such mod-
els is that stability or instability is determined
by finding the sign of a sum of large numbers
with different signs and, hence, is critically
subject to the model chosen. This method has
led to a number of misleading results. In this
Letter we derive a necessary and sufficient
condition that the usual three-wave resonant

scattering equations' possess unbounded solu-
tions for arbitrarily small perturbations which
does not rely on such models. For a number
of interactions this condition is easy to eval-
uate, and in particular, it follows that the non-
linear resonant interactions of the usual beam-
plasma modes in homogeneous plasmas gener-
ate large amplitude fluctuations even for wave-
lengths which are linearly stable.

The standard weak turbulence equations' '
describing the three-wave resonant interaction
of longitudinal modes in a homogeneous plas-
ma can be written as

—k k'' k"

Here Nl, =(8v) )Be/B~y~l~Ek I is the number density of plasmons with wave number k and of
the type "o,"where "n" labels the different eigenfrequencies uk which exist for a given k; tEk+ p
is the square of the electric field amplitude of the "n" mode; I Vy~i~ii &

l is a matrix element cal-
culated from stationary plasma functions which is symmetric under interchange of the indices (k, n),
(O', P), (k", y); e(k, +) is the linear dielectric function which is zero for v =»; and Sp is the sign
of (Be/B&u)~ =»n. To find a stability criterion one needs only the integral conditions which follow
from (1):

B N (t)
ln

Bta, n N (O)J

So S,P S„y
I V, „ I

()(k+k'+k")()((u +(u, +(u „)N N, N „+— +
k k'k" N N N—k k' k"—

and for the time-independent functions bk~,

k, n
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