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(Table I). It follows that the over-all gain is
limited to -GE~ or 10~-10 for picosecond 10-
GW pump pulses. This conclusion is support-
ed by our failure to observe nonfilamentary
stimulated Raman emission at 10-GW-cm
pump intensity over a distance of 10-30 cm.

It appears that picosecond light pulse exci-
tation of Raman scattering may provide a valu-
able technique for probing molecular orienta-
tion dynamics in liquids by the use of pulse
times on the scale of the molecular orientation
time.

We are grateful to Dr. P. M. Rentzepis for
valuable cooperation throughout this work and

for a critical reading of the manuscript.
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~ Raman gains for picosecond-pulse excitation are in
fact somewhat less than calculated from the scattering
cross sections, since the spectral width of the pulse is
larger than the Raman linewidth. This effect cannot
explain the present picosecond results, however, since
for example the reduction in the gain for CS2 (line-
width 1.6 cm ~) would be larger than that for nitroben-
zene (linewidth 8 cm ~).
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A method for solving the initial-value problem of the Korteweg-deVries equation is
presented which is applicable to initial data that approach a constant sufficiently rapidly
as ~x~ ~. The method can be used to predict exactly the "solitons, " or solitary waves,
which emerge from arbitrary initial conditions. Solutions that describe any finite num-
ber of solitons in interaction can be expressed in closed form.

For a large class of physical systems, non-
linear and dispersive processes compete while
dissipation is negligible. In particular, the
Korteweg-deVries (KdV) equation,

u -6uu +u =0
t x xxx

(subscripts x and t denoting partial differenti-
ations), has been shown to describe the asymp-

totic development of small- but finite-ampli-
tude shallow-water waves, ' hydromagnetic waves
in a cold plasma, ' ion-acoustic waves, ' and

acoustic waves in an anharmonic crystal.
The quantities u, x, and t can be rescaled

to produce any desired coefficients for the terms
of Eq. (I). The present choice is convenient
for this paper. Note that u is reversed in sign
from previous work since the coefficient of
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—(u —X)( =0,
XX

(2)

where u(x, t) is a solution of Eq. (1), so that
g(x, t) and A(t) depend parametrically on t. Solv-
ing Eq. (2) for u and inserting the result in
Eq. (1) yields

the second term is negative. Further, the KdV
equation is Galilean-invariant so that u(x-6&t,
t)-V forms a one-parameter family of solutions.

Previous numerical computations, ' as well
as more recent ones, ' indicate that for large
t the solution of an initial-value problem con-
sists of a finite train of "solitons, "or solitary
waves, traveling to the right, and an oscilla-
tory train or "tail" spreading to the left. The
solitons exhibit a remarkable stability in that
their identity is preserved through nonlinear
interactions. This property of solitons, which
was discovered numerically' and justifies the
name suggestive of particles, has been proved
by Lax' for two of them, and can be demonstrat-
ed for any number using the solution described
below.

We now sketch a general method of solution
that can be used to establish these results rig-
orously. It is applicable to initial data that
approach a constant sufficiently rapidly as Ixl

The Galilean invariance described above
permits us to set this constant equal to zero.

First consider the differential equation'

(0, D =0 because the corresponding (z satis-
fies Eq. (5) and vanishes exponentially as Ixl-~, and C =0 because we are assuming the
normalization f f„'dx = 1. Then inserting

P =c (t) exp(-e x) for x-~,
n n n

with ~„=(-A.„)'~'&0 into Eq. (5), we find

c (t) =c (0)exp(4K 't).
n n n

(6)

The analogous coefficients for large negative
x decay exponentially in time.

For A, =k'&0, a solution of Eq. (2) for large
Ix) is a linear combination of exp(+ikx). We
impose on g the boundary conditions

(= exp(-ikx)+ b exp(ikx), x- ~,

g = a exp(-ikx), x -—~.
(8)

(9)

In the frequent interpretation of Eq. (2) as de-
scribing the normal modes of a wave equation,
the coefficients of unity in Eq. (8) and (implied)
zero in Eq. (9) indicate prescribed steady ra-
diation arriving from +~ only. The coefficients
of transmission a(k, t) and reflection b(k, t)
can be shown to satisfy tal'+ ib I' =1.

The spectrum for X&0 is continuous and we
may choose A. constant, so that Eq. (5) is again
valid. Inserting Eqs. (8) and (9) into Eq. (5)
and equating the coefficients of the two indepen-
dent solutions at+~ and at -~, we find D =0,
C =4ik, and two equations which integrate triv-
ially to yield

with

Q—= g +g —3(u+A.)(,t XXX x'

a(k, t) = a(k, 0),

b (k, t) = b (k, 0) exp (8ik't).

(1o)

(11)

for the time development of the solutions of
Eq. (2). If ( vanishes as ix)-~, the second
term of Eq. (3) vanishes on integration over
the interval (—~,~). Therefore it =0, i.e. , the
discrete eigenvalues of Eq. (2) are constant
when u evolves according to the KdV equation.

Dropping the first term, we can integrate
Eq. (3) twice to yield

g + g —3(u+X)g =Cg+Dy.t xxx x (5)

K(x, y) + B(x+y) + j K(x, z )B(y + a )dz = 0,

with

(12)

t oo

B($)—=— b(k) exp(ik$)dk+gc ' exp(v (). (13)
n

This information on the development of tf is
sufficient to reconstruct u for any value of time t

Specifically, given the reflection coefficient
b(k) and the z„and c„, let K(x, y) for y)x be
the solution of the Gel'fand-Levitan equation, '~"

Here C(t) and D(t) are the constants of integra-
tion, and cp is a, solution of Eq. (2) that is lin-
ea, rly independent of g. Thus p=—gf dx/p

It is now straightforward to compute the evo-
lution of ( in regions where u vanishes, and,
in particular, asymptotically for kl-~. For
a (time-independent) discrete eigenvalue X~

Then

u(x, t) =2(d/dx)K(x, x). (14)

The evolution of u(x, t) is obtained from the
explicit dependence on time of b(k) and the c„
given by Eqs. (11) and (7). [In all these formu-
las the signs of x, y, and ~ have been reversed
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from Kay's" usage, thus the reference end
in Eqs. (6), (8), and (9) is +~.] Note that K(x,
x) as determined by Eq. (12) is independent
of values of B($) for $ &2x.

A number of results can be established by
further elaboration of this method, which we
mention without going into details.

When u represents a single soliton, there
is perfect transmission [b(k) =-0] and exactly
one discrete eigenvalue &.y

= ~~min. More gen-
erally, Kay and Moses" have given the gen-
eral solution of Eq. (12) with b(k) -=0 in closed
form in terms of exponentials. This includes
all cases where u decomposes exactly into
solitons.

It is more difficult to find exact solutions
when b(k) does not vanish. The time dependence
of b(k) indicates a strong phase mixing in the

integral of Eq. (13) as t- ~ for positive (. The
behavior for negative $ is more complicated
since the integrand then has points of station-
ary phase. This is reflected (in computer stud-
ies) by the "tail" moving toward the left.

Since the c~ grow exponentially, as long as
there is at least one of them B($) can be approxi-
mated by the summation when Eq. (12) is to
be solved for x &0 and t -~. The solution then
reduces to that found by Kay and Moses" de-
scribed above. Thus the magnitude, velocity,
and position of each soliton can be found in the
limit of large time. Furthermore, the solitons
for large negative time can be found from the
usual version" of Eq. (12) where the reference

end is -~.
A fuller treatment together with other appli-

cations and generalizations will be published
subsequently.

*This work was performed under the auspices of the
U. S. Air Force Office of Scientific Research, Con-
tract No. AF49(638)-1555.
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Several authors have reported the observa-
tions of frequency broadening in filaments which

were produced by the self-focusing of a Q-
switched laser in liquids. ' 3 This broadening
has been attributed to the generation of new

frequency components through an intensity-de-
pendent refractive index and stimulated Ray-
leigh scattering. ' 4 Theories of the frequen-
cy broadening in an optical pulse by an inten-
sity-dependent refractive index have been giv-
en in connection with the pulse distortion. '~'

But comparison of experiment with theory has

been difficult, because the broadening is usu-
ally irregular and the observation of the spec-
trum in filaments is obscured by the strong
background. We report here the observation
of the frequency broadening in a filament with
short duration time, under such experimental
conditions that the intensity of the stimulated
Raman emission in the filament is much less
than that of the laser. The structure of the
frequency spectrum shows a pattern which can
be explained by phase modulation through the
intensity-dependent refractive index.
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