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A method is given for calculating vertex functions involving three currents obeying
chiral SU(2) I9 SU(2) commutation relations, without using soft-pion approximations. The
procedure assumes one-particle dominance of intermediate states. The Weinberg sum
rule emerges as a consequence of the vanishing of q-number Schwinger terms. The
charge radius of the pion is obtained and is in agreement with existing data.

Recently Schnitzer and Weinberg' have developed techniques for calculating T-products of three
currents obeying chiral SU(2) te SU(2) commutation relations. These results are remarkable as they
allow the calculation of such processes as p-&+& and A, —p+n without resort to soft- or massless-
pion approximations. Their method involves the use of the Ward identities for the vertex functions,
combined with the assumption of single-particle dominance by ~, A„and p mesons. We here pre-
sent an alternative analysis also based on single-particle dominance, but more directly connected
to the current algebras. ' The two procedures give identical answers for the T-product of three cur-
rents but represent different techniques for extending these results to more complicated problems,
such as four currents and higher groups.

We start by considering the T-product (T[Aa (z)Ab (y) Vc~(0)]), where a, b, and c represent the
SU(2) indices. This function may be expanded into its six time orderings of which a characteristic
one is

(A (t)V (0)Ab (y)) = Q (OIA In)(nlV jm)(miA i0).

Imposing single-particle dominance (i.e., saturating the right-hand side with w and A, states for this
case) one encounters the matrix element (0 lAa I w, qb) which is proportional to F~q~ [by partial con-
servation of axial-vector current (PCAC)'], and (0 iAa iAI, qb) which is proportional to gAe~(q).
Here e is the polarization vector of the A» and gA is the coupling strength of the axial current to
the A, meson, defined by Weinberg. '~s (For other time orderings, there appears the factor (0 i Vcy
x ip, qb) which involves the coupling strengthg& of the vector current to the p meson. ) For the one-
meson-one-meson matrix elements, we use the single-particle-dominance hypothesis in the stronger
form that the vector current couples to the mesons only through the p, and the axial current only
through the w and A, particles. Thus, for example, the vertex (~ I Vc& I ~) has a p pole in the momen-
tum transfer, and so one writes phenomenologically

(2w) (2+ 2w )'(mqb i V isa) =is b, (k)l (q, p) =is b, (k)[a +a k + ~ ~ ~ ](q+p) .3 yZ . yA.

q p c abc p g ' abc p 1 2
(2)

Here dpi ~(k) (where k -=q-P) is the p propagator and I'& is the m-m-p vertex function. If one is not
considering processes with too high a momentum transfer, presumably only a few terms in the se-
ries expansion of I ~ need be kept. Similarly, expressions for other one-meson matrix elements
can be written down, the axial currents possessing corresponding A, and m poles.
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In order to facilitate calculation of the T-
product, it is convenient to replace the currents
by field operators which are arranged to give
rise to precisely the above form for the matrix
elements. Since only one-particle matrix ele-
ments occur (or at most those related to them
by crossing) one can replace the currents by
a set of phenomenological in fields that anni-
hilate and create the n, A„and p particles.
Thus for the vacuum-one-meson matrix ele-
ments, one can replace Az~(x) by gAa~~ and

E~B~cpa and Vc~ byg v™c~where a~, ya, and
B~ are the A» n, and p in fields. For the one-
meson-one-meson matrix elements, one needs
a structure quadratic in the in fields. For ex-
ample, for the case of Eq. (2) one can replace
V~&(x') by

V ~-ie j~ ~
( -z)

a abc p

x [a -a 0 + . ]p (z)s p (z),
2

(3)

and similar expressions for other matrix ele-
ments. The total currents can then be replaced
by the sum of all the linear plus quadratic struc-
tures needed to simulate all matrix elements
that appear in the various three-point functions.
One can easily verify that the assumption of
single-particle dominance is satisfied then by
evaluating the T-product using the equivalent

total currents, but keeping only terms quart|c
in the in fields (in the T-product).

We have used up to now only single-particle
dominance and the pheoomenological form of
the vertex functions. We next impose the re-
quirement that the currents obey the SU(2) S SU(2)
algebra. First, we note that the quadratic parts
of the equivalent currents, e.g., Eq. (3), are
not in general local operators. The simplest
(and probably only) way of guaranteeing local-
ity is to assume that the in-field expansions
of the currents are actually solutions of field
equations arising from a local Lagrangi. an.
Thus the p propagator in Eq. (3) would arise
naturally if Vc&(r) were proportional to a Hei-
senberg p field vcr(z) (as a consequence of
the Proca operator in the p field equations) .
Furthermore, the quadratic structure in Eq.
(3) would occur if cubic interactions between
vc& and a Heisenberg v field y~(z) appeared
in the Lagrangian. Similarly, one introduces
a Heisenberg A, field a~~(x) to produce cor-
responding A, propagators in other matrix ele-
ments. The phenomenological in-field expan-
sions such as Eq. (3) can then be simulated
by writing down a11 possible cubic interactions
between these fields, with now the guarantee
that the corresponding equivalent currents are
local field operators. We now choose for this
equivalent Lagrangian the structure 2 = ZQ~
+ cCQp + cCQA + ce'I where the interaction Lagrang-
ian is'

2=2e [b v v G +h (v a -v a )8 +ha a „G +2f v yI abc 1 p.a vb c 2 p.a vb va p,b 3 p,a vb c 1 p,a b c

2 ~ vb c I pn b c 2 a b pvc

+~ (v V
-v V' )& +~ (~ V -~ V )G ], 4

p.v pvi
3 pa vb va pb c 4 pa vb va pb c

where h„h„etc., are a set of undetermined
coupling constants. The currents are then re-
lated to the phenomenological fields by

A =g a +E8 y, V =gv
a Aa r a' a pa (5)

To calculate the T-product, one is then to solve
the field equations arising from Eq. (4) and
use Eq. (5) to calculate the currents. The as-
sumption of single-particle dominance is eas-
ily seen to be equivalent to calculating the T-
product to only first order in the coupling con-
stants.

The Lagrangian of Eq. (4) is the most gen-
eral cubic interaction that can be written with-
out derivatives in a "first-order" formalism. '
This automatically gives rise to a fixed num-
ber of terms in the momentum-transfer expan-
sion in Eq. (2). [If additional terms in the ex-
pansion of Eq. (2) were desired, one would have
to add to 2, additional cubic terms containing
correspondingly higher derivatives. ] The adop-
tion of Eq. (4) is hence a physical assumption
which is to be subjected to experimental ver-
ification. ' %e remark in passing that, from
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the standpoint of Lagrangian physics, Eq. (4)
represents the most natural structure.

We now impose the requirements that the
currents of Eq. (5) obey the chiral algebra and
also that ~p, Va~ 0 and BpAa~ En~m pa.
Single-particle dominance implies that these
conditions be satisfied only to first order in
the coupling constants A, „h„etc. First, we
consider the commutation relations between
fd'x A~', fd'x V~' and A~&(x), V~&(x). These
along with conservation of vector currents and
PCAC determine (by straightforward calcula-
tion) all the coupling constants in terms of k,

and the three parameters x = &2m&/mg, y —=gg/
g&, z =g&/E~v2m&. Next, we impose the more
restrictive condition that the algebra obeyed
by the current densities be free of q-number
Schwinger terms. This produces only one fur-
ther relation, the first Weinberg sum rule'.
x'y'z'-2z'+1 = 0. Thus all the coupling constants
are determined in terms of two of the param-
eters and k3 =- (m&'/g&)Xg, where Ag is the anom-
alous moment of the A, meson. ' It is now straight-
forward to calculate the T-product of the cur-
rent operators, since one need use the dynam-
ics of Eq. (4) only to first-order perturbation
theory. One finds, for example,

f ' y 'P"&T[8 A (x)8& (y)V (0)])a p b e

=-F m g ie (q +m ) (p +m ) a (k)[f (q+p) +f (qkp -kpq )]
2 4 . 2 2 -1 2 2 -1 yX

7T 1T p QbC p 1 A, 2 A. A.
(6)

in agreement with the Ward-identity analysis
of Ref. 1.'

The current-commutator relations determine
only one relation between x, y, and z. In ad-
dition to this, there is the second Weinberg
sum rule, 4 based on a high-energy postulate
yielding x =1, and the soft-pion derivation of the
result' z =1. Since both of these derivations
are somewhat less reliable than current-com-
mutator results, it is perhaps more conserva-
tive to assume the experimentally known result
x =1, and search for other data to determine
z or y. As pointed out by Sakurai, "the decay
p'- p++ p, gives a direct measurement of

pp since the de cay amplitude is proportion-
al to (0 I Vk-~ lp). Assuming z =1, one finds. 0.37
&10 for the muon-pair branching ratio, in
satisfactory agreement with the experimental
result" of (0.44~0 2~) x10 '. An improvement
in the accuracy of this experiment could lead
to a precision determination of g . Since p - ~

P
+& and A, -p+& can be calculated directly from
the vertex functi. on, ' they yield further infor-
mation on both z and XA. One may proceed
by using the phenomenological y~, a~&, and
vz& as interpolating fields for the respective
particles on their mass shells. If one assumes,
for simplicity, x =y =z =1, then both decays
are reasonably consistent with a value of AA

=+0.4+0.1. This yields p and A, widths of 114
and 93 MeV, respectively, to be compared
with the experimental values" of 140+ 20 and
130+40 MeV. (We have used the experimen-
tal value of E~ =94 MeV. ) We note, however,

that the A, width is sensitive to small chang-
es in the value of z' =g&'/(2E~'m&').

We can also apply our results to calculate
the charge radius of the pion, re. This can
be determined from the vertex (nq ~ V~~ Iwp).
Inserting the value of g vz & determined by
Eq. (4), one obtains for the form factor (when
x =y =z =1)

f(k ) =m (k2+m ) [1+—'X k m 2] (7)

where f(k') =1-se'k'/6+ ~ ~ ~ . For Ag = 0.4 one
finds rz =0.6 F, in agreement with the exper-
imental value'4 of 0.7 + 0.2 F. We next compare
this calculation of re to the massless-pion val-
ue. Contracting down both pions and using PCAC
in the usual fashion yields three-point and two-
point parts. One obtains the identical formu-
la for rz if one makes the massless pion con-
tinuation q'=0=p' on the total function. The
two-point part alone yields re =6"'/ &mwhich

is the result one obtains in a p-dominance mod-
el. As can be seen from Eq. (7), the full re-
sult has the additional A, magnetic-moment
term. In this case, however, p dominance ap-
pears to be a good approximation due to the
"accidental" smallness of —4'~A.

There appear to be no essential difficulties
in extending the above results to SU(3) octets
of currents. The method also provides a prom-
ising approach to the calculation of T-products
of four currents which would then allow the
calculation of scattering amplitudes and three-
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body decays.
A more detailed description of the above tech-

niques along with applications to peripheral
processes will be published elsewhere.

terms consistent with the Ward identities.
8We find that

h =h =f =m 2g; g = —m 2g =E m 2m 2(g g )1 2 1 p p
' 1 A 3 m A p p A
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We use PCAC in the form Bp,AgI"=Elm~ y~ where

y~ is the pion field. Note that our currents are nor-
malized so as to obey equal-time commutation rela-
tions f&~0(~)s A~P(y)] =g~~~~y~P(~)g3(~ y)~ etc
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are the "field strengths" for the p field vz&, and HzP~
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g =(gF) g (A, m m -1);
p m A A p A

2F g2=gAg -g gA

While q-number Schwinger terms have been elimi-
nated from the current commutators, it is still possi-
ble for noncovariant Schwinger terms to arise in the T-
products (as is the case for two current operators).
Such structures would posses one less pole than the
normal terms, and hence not contribute to mass-shell
calculations but conceivably could effect off-shell re-
sults as in vertex form factors. Actually, all such
Schwinger terms cancel in the T-products of three cur-
rent operators, which tends to justify the use of these
results off the mass shell. However, Schwinger terms
are present in some of the field T-products, e.g. ,
(T(B~Aa ah Vc~)).
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