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below 26 atm is I ne —no i
= (2.6+ 0.1)x 10

Rather large single crystals of solid helium
can be grown quickly by increasing the pressure
over superfluid helium to slightly above the
freezing pressure.

Note added in proof. —We have recently re-
ceived preprints of papers by J. E. Vos, R. Vee-
nenga Kingma, F. J. van der Gaag, and B. S.
Blaisse of Delft, The Netherlands, which have
been accepted for publication by Phys. Letters
and Physica. They performed similar measure-
ments on small (2-mm linear dimension) sol-
id-helium crystals using a somewhat different
technique and their results at 30 atm are in
good agreement with the present results. Us-
ing crossed beams they were able to show that
ne-no is positive for hcp solid helium and to
measure the direction of the c axis for sever-

al arbitrary crystals.
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The Slater KDP model is solved for all temperatures and with an electric field. Above
T the specific heat behaves like (T-T~) and the polarizability like (T-T ) ~. There
is a first-order phase transition at T& (latent heat). Below T~ the free energy is simply
-ibid (8 =electric field, d =dipole moment).

Slater' introduced a model of hydrogen-bond-
ed ferroelectrics known as the KDP model,
since it was supposed to account for KH, PO4
and similar substances. He treated the mod-
el by mean field theory and obtained a first-
order phase transition (latent heat). The po-
sition of the critical temperature T and the
value of the latent heat were shown to be cor-
rect by Takahashi. ' The model has been wide-
ly discussed. '

Recently, Wu~ gave an exact treatment of
a modified version of the two-dimensional Sla-
ter model. He obtained the same T~ as Slater
but found a second order phase -transition (no
latent heat). Wu also found that the specific
heat C was 0 for all T( Tc and C -(T-Tc)
near and above T~. This contrasts with Sla-
ter's result that C is finite at T~.

In this paper we give an exact solution of the
original Slater model in two dimensions. We
also wish to emphasize that the analysis is
somewhat different above and below T~ and
that we have solved the model in both temper-
ature ranges. Our results are the following'.

(1) Below Tc, C = 0 as found by Wu, (2) There
is a latent heat at T which agrees with Slater's
value. (3) C-(T-T ) '" near and above Tc,
which agrees with Wu. (4) Near and above Tc
the polarizability goes like (T-Tc) ', which
agrees with Slater's treatment (Wu did not dis-
cuss the polarizability of his model).

The mathematical statement of the problem
is to place arrows on the bonds of a square
N &N net so that precisely two arrows point
into each vertex. Associated with the six al-
lowed vertices (Fig. 1) are energies e, =e, =0,
e, =e~=e, =e, =e) 0. In the E model of an an-
tiferroelectric. discussed previously, ' the as-
signments were e, =e, =e, =e~ = e )0, e, =e, = 0.

(2)

FIG. 1. The six allowed vertex configurations for
the Slater KDP model in two dimensions. The ener-
gies are e~=e2 =0, es=e4=e5=e~ =a)0.
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In Wu's version of KDP, vertex 1 was not al-
lowed.

We find the partition function Z by the trans-
fer-matrix method originally introduced for the
the "ice"problem'.

Z=max Z(y),

where

Z(y) = [A(y)] exp[N Ey],
2

where

D,(X, Y)

-EN=e U(y -x )U(y -x ) ~ ~ ~ U(y +N x-),
2 1 3 2 1 n'

D (X, Y)

-EN=e U(y -x )U(y -x ) "U(y -x ),1 1 1 2 n n' (4)

and where E = Sd/k T (8 = electric field, d =di-
pole moment), y = I-2n/N (n =number of down
arrows), and A is the maximum eigenvalue
of the transfer matrix

A(q, y') =+exp(-ZI),
where R = e/k T and m = number of types (3)-
(6) vertices, and where the sum is over the
allowed arrangements of horizontal arrows.
The notation in (2) has been fully explained
in Refs. 5 and 6. The eigenvalue equation in
a given n subspace is [cf. Eq. (1) of Ref. 6]

with

f(x x )=gla(P) exp[i Q k .,x.],I 1PJ)2' (6)

U( ) e [1+6( )(e -1)]
(6 =Kroenecker delta). It is instructive to com-
pare (4) with the corresponding equation in
Ref. 5, whence it will be seen that the KDP
model has lost the left/right symmetry inhe-
rent in the E model.

Again we make the plane-wave Ansatz

x x
n

= Z" Z f(y y)D(X, Y)
y =1 y =x

n n-1

x2 N

Z " Z f(yl
=x p =x

1 1 n n

and we find (for n even) the following:
If P = ~ ~ p, q, ~ ~ ~ and Q = ~ ~ q, p, ~ ~ ~, then

a(P) =a(q)B(p, q) with

B(p, q)

= -[1+e 2' -][1+e -2b,e ]
i( +q) i i( + q) iq -1

where 6= —,'e
For all i =1, ~ ~, n,

exp(ik N) = II a(k. , k.).
ywz

A= g [l-exp(ik. +R)] exp(igk. )+e g [exp(ik. )-exp(ik. +2K)+e ] .
l

2 1

Again, we have constructed the eigenvectors
of the Heisenberg chain

N
H= —Q S. S. +S. S. +b,S. S. , (8)

Z Z+ Z S+ Z Z+$=1

although with a different eigenvalue. This time,
however, the properties of the ground state
of (8) are understood completely only for b, & 1.
Nevertheless, we can solve the problem com-
pletely for all 6. It is worth noting that this
problem is in some sense the mirror image
of the E model. ' For both models 6 = —,

' corre-

sponds to T=~. As T decreases, 6 decreas-
es monotonically for the E model with the crit-
ical point at ~=-1. For KDP 6 increases mono-
tonically with 6 =+1 being the critical point.
This corresponds to a critical temperature
e+ = 2. The two models are completely differ-
ent, however, because the singularities at the
two values of 6 are different.

We discuss the high- and low-temperature
cases separately'.

High temperature (2 & A ~ 1).—Following the
standard development, ' we change variables
to e+ = (e~~ eo)(e'&+-a-I) 1 with A = -cos p
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The distribution in n space, R(o), satisfies

b
R(~) =&(~) f-p( p-)R(p)dp,

5
w(1-y) = f ~R(n)dn,

with

&(0.) = sin p[coshn-cosy]

E(n) = (2n)
—' sin2 p[cosho. -cos2 p]

Since the k's are real (with Qk = 0) and since
n & ,'N (i—.e., y ) 0), the second term in (7) van-
ishes relative to the first (in the bulk limit).
Hence

N lnZ(y)

y-2d'[k ln2(T-T )]
C

(17)

I ow temperature (6) 1).—We are able to
derive the partition function in this case with-
out recourse to (7). Set E =0 and observe that
since all energies are non-negative, Z(y) is

Since both b and R(n) decrease with increas-
ing y (with b = ~ at y = 0) and since the log fac-
tor in (13) is negative, it follows that y is an
increasing function of E with y = 0 at E = 0.
For y =0, R(n) = v[2 p. cosh(n'o. /2p) ' and hence,
for E =0,

N 'lM=-- d&
l

cosh P~cos P' . 14
4 coshvn cosh', n-cos p

For T- T, p, =m and we can expand the inte-gP
gral in (14) to obtain the internal energy/ver-
tex= —,'e at T=T~. We also find for T-T~ that

2 2 E-—'
C-(e /4wuT )(2-e ) '.

To compute the polarizability for T- T~ we
expand the logarithm in (13) in powers of (cosy
-cos3p)(coshn-cosy) '. The first term so
obtained is the same as for the ground-state
energy of the Heisenberg chain (8). The depen-
dence of this term on y is known [Ref. 7, Eq.
(69) ] and we find that

N 'ln[Z (y)/Z(0)]

=Ey-aw(v-p)(8p) '(sing)y'+O(y') (16)

to leading order in 1-A. This leads to a po-
larizability

a convex, continuous, monotonically decreas-
ing function of P=(kT) ~ (for N finite). Since
z(y) = Z(y) /N is bounded above by (4), it fol-
lows' that as N- ~, limz is a bounded, continu-
ous, convex, nonincreasing function of P. For
N = ~ and all y, z (y) = 1 at Pc = ln2 [from (13)].
Furthermore, at P=~, z(y) =1 for all y because
the completely ordered state has zero energy.
[To be precise, if y =0, Z(0) =-2 (two ordered
states). If yg0, Z(y) -2e pe which is ob-
tained by placing all the up arrows on a row
of vertical bonds next to each other and then
placing rows on top of each other in a spiral
structure. This introduces two "dislocations"
running the length of the lattice. In the bulk
limit the factor e 2peN is of no consequence. ]
Now, since z is nonincreasing, we conclude
that z(y) = 1 for all y and all T & Tc. Hence

N 'lnZ(y) =Ey, or N 'lnZ= (E(

(for T& T ).
C

(18)

It is fortunate that we are able to solve the
problem this way because it is difficult to ob-
tain the solution from (7). Clearly A(0) =1 be-
cause the product in (7) is vacuous for pg =0.
When h&1, the appropriate k's are complex
and this solution has not yet been found. How-
ever, we can evaluate (7) when n is fixed»l
and N -~. In this case, it is knowne that ik&
-=p is real and, as j—~, coshpj approaches
—,'6 rapidly. N 'lnA is therefore 0, as required.
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