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We compute the on-mass-shell electromagnetic mass difference pz+ —pro, in a model
consistent with chiral-algebra constraints and partial conservation of axial-vector cur-
rents, and find it to be logarithmically divergent. Some implications of this result are
discussed.

In a recent Letter, Das, Guralnik, Mathur, Low, and Young' have presented a current-algebra
calculation of the electromagnetic mass difference between the charged and neutral pi mesons

5p, = p, +,
—p,

77 7T

They work with pions of zero four-momentum and obtain 5p, for the unphysical ease p, z —-0. In this
note we show how to generalize their calculation to on-shell pions and give the corrections of order
p~'/rnp' to their result.

We begin with the expression'

e p dg
&p. = 2E Re II, . Ig—-&, ~d xe ~{(w (k)17'[V (x)V ™(0)]—p (x) lm (0))—(m -~ )), (1)4m v J q ii) p. v q'— V JU, V

where the quantity inside the curly bracket is the difference of two current correlation functions~
which are, separately, covariant and gauge invariant, and ~ is an arbitrary parameter. We reduce
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both of the pions as in Ref. 1 to obtain

e' t'&)' d'q q q )
p. 4w (2ni q'-ie pe q' f ' '

p, v'

where we define

T(k, k, q), =(k -p, )(k —p )fd xd yd ze ~ e ' e (0!T*[n(x)'n (y)V (z)V (0)]10) (3)
abed 2 2 2 2 4 4 4 ik~x ik, y iqz a b c

1' 2' P v
'

1 m 2 V

T(k, -k, q) = pT(k, -k q) '"'+ ,'T(k-—k q) ""+T(k -k q)
P V I[LV P V P. V

corresponding to Eq. (I). Using the definition of partially conserved axial-vector current (PCAC),

a —1 -2 a
n (x)=E p, 8 A (x),

71' p,

in Eq. (3) we have

(k '-~ ')(k '
I ')-

abed I v 2 m p 4 4 4 ik~x ik2y iqzT k, k, q =-, 4 f d xd ydze ' e ' e
pv

x(0lT*[8 A (x)a A (y)V (z)V (0)]IO). (4)
ILjt P, V V P. V

At this point Das et al. perform a sequence of partial integrations to remove the derivatives act-
ing on the axial currents, using the equal-time commutation relations of the local chiral SU(2) 8 SU(2)
current algebra, and take the limit k& =0. This enables them to reduce the right-hand side of Eq.
(2) to an expression involving only the two-point functions of the vector and axial-vector currents
studied by steinberg. ~ The sum rules

I. p (m') p (m')

n2 m2 r'
fp (m2)dm2 = fp (m2)dm2,

(5a)

insure the finiteness of 5&'. In the p and A~ dominance model where one assumes

p (m') =g '6(m'-m '),
V p p

(6a)

p (m') = g '6(m'-m '),
1

(6b)

and taking in addition the Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin' (KSFR) condition

g S2 2E
p p ff

they obtain

5 2= (3o'/4m')m 2x 2ln2.
p. p

Our calculation proceeds from Eqs. (2) and (4) directly. We have obtained expressions for T(kl,
k2, q)&p&«which satisfy the constraints of the gauge conditions imposed by the chiral commutation
relations and PCAC, in an approximation where the vertices and contact terms have the minimum
a11owable momentum dependence. The explicit details of this construction along with other applica-
tions will be presented elsewhere. Two of us (I.S.G. and H.J.S.) used a method which is a general-
ization of the three-point function calculation of Schnitzer and Weinberg while the other two (B.W. L.
and H.T.N. ) used a phenomenological chiral Lagrangian technique. In both cases, the result is iden-
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tical on the mass shell.
Inserting our expression for T(k, —k, q) ~ into Eq. (2) we obtain

e2 gyes
2 1 rd~q 1 3jU. ' 1 1

-8+—,——, , [(q'+4p. '+4k q)-2m '(1+ 5)(p, q' (k —q)']4' 4w' i . q' (m '—q')' 2 m ' 2 ~ '—(q+k)' P 7T
p P 7T

+ —,'m ~(1+&)'q'[p. 'q' —(k q)']+, , (—8m '+7p '+14k q+q'-65k q+m 2(—6(k q)'
p w m ' —(q+k)' p p

1

--,'p, '—6 p, 'k q+ 5[6(k q)'+ 3iL 'k q] —6'[(k q)'+-' p, 'q']+ m '(l-5)'q'[Itl 'q'-(k. q)'g+k - —k, (8)'
7T 7T 7T 7T p 7T

where 5 is the anomalous magnetic moment of the A, as defined in Ref. 6. Evaluating Eq. (8) we find

Sn p ' 5 m ' 19 1 A' ll I) (' 3 1 1 A')
5p2= —m 2 21n2+, ——+ln 2+—ln2+ —In, +551 —ln2 ——l+52l —-+—ln2+ —ln

4m p m' 2 p.
' 4 8 m' (2 4i ( 4 4 8 m'j

p 7T p p

(9)

where A is a cutoff. Our calculation, unlike that of Ref. 1, gives a logarithmically divergent result
despite the use of the Weinberg sum rules, Eqs. (5). Numerically,

A2
-m 2 ln2 1+ 0.15+0.003(l+ 62) ln;+ 0.015(1-6)

47T P m'
p

(10)

where the zero-mass limit, Eq. (7) of Das et al. , has been exhibited explicitly and the rest are the
order-p. 2/mp corrections. Since according to Ref. 6 16i (I, we have

A2
6 = 5 1+0.15+0.003(l+ 62) ln 2 MeV,

p.
p

=6 MeV.

We wish to make the following observations:
(1) The existence of a logarithmic divergence in an on-mass-shell calculation is hardly surpris-

ing since this is expected on general grounds as shown by Halpern and Segre. ' Our divergent term
is two orders higher in gp, the effective p~v coupling, than the (finite) zero-mass term, consis-
tent with their result obtained using the algebra of fields. '

(2) The present theory, which is tailored to describe low-energy phenomena, has been unjustifi-
ably extrapolated to a high-energy virtual process (q -~). Thus, high-energy damping effects, which
made it possible for Harari' to argue that the AI=2 electromagnetic mass shifts should be dominat-
ed by low-lying excitations and therefore computible, are in fact lacking in our considerations. With-
in our model, if we require the I= 2 (i-channel) Compton scattering amplitude to be superconvergent
and relax the KSFR condition, we obtain the constraint, independent of 5,

g R2 —2F7T

p p

which is precisely the condition that the coefficient of ln(A'/mp') vanish. This is related to the "fake"
solutions of superconvergence relations found by Fubini. "

(3) Our numerical result is very insensitive to the value of the cutoff momentum A. Since present
experimental data seem to indicate a much faster decrease of electromagnetic form factors than
is implied by the p-dominance model, we may guess that A is relatively small, probably not much
more than several p-meson masses. The cutoff term contributes -0.0t MeV to 5p, for A = 10mp and
-0.14 MeV for A = 100m

(4) In general the o' term, coming from the commutator [A0~(x), a &A &~ (0)]5(x0), can add a correc-
tion of O(p, ~'/mp'). Here we assume that this model-dependent commutator transforms as I=O and
hence does not affect our calculation.
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An analysis of the && and the p decays is made using current algebra, partial conser-
vation of axial-vector currents, and dispersion relations; the pions are treated as "soft"
in the sense K2 0 instead of K 0 which is usually assumed.

The present paper is devoted to a study of the decays p-2m and A, -pm using the techniques of
current algebra and dispersion relations. It is well known that the usual treatment' of the p -2m de-
cays requires large extrapolation in the masses, so that it is surprising that the result comes out
so close to the experimental value. Also in the calculation' of the A, - pm width one gets a gross
overestimate of the decay width, if one uses current algebra and the soft-pion technique and assumes
unsubtracted dispersion relations for the relevant form factors. We shall show how the p and the

A, decays can be understood consistently in a single framework. '
On general grounds of invariance we define the matrix elements

)ie (p)
(s'(k) I V '(0) IA +(P)) = „,[L (q')6 +L (q')k (P+k) +L (q')k (p-k) ],

(p)
c

(v'(k) iA '(0) ip+(p)) = „,[R (q')6 +if (q')k (p+k) +If (q')k (p-k) ]. (2)

The conditions of conservation of vector currents on Eq. (1) and of partial conservation of axial-vec-
tor currents (PCAC) on Eq. (2) lead to the following constraints among the form factors:

Ll(q') + (MA' P')L2(q') q'L-3(q') = o, -
R (q')+(M '-p, ')K (q')-q'E (q') =2p'F G /(q'+ p'), (4)
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