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It is shown that in the absence of direct reactions, the averages of the diagonal ele-
ments of the pole-residue matrices —iG& of the S matrix (sometimes called partial
widths) satisfy

2m(G ) /D=exp(2i) )T j(1—T ) i,
pcc p C C C

where D is the average pole spacing, 7.'~ is the optical-model transmission coefficient,
and $~ is the real part of the optical-model phase shift.

2w(G ) /D=2sinh(2q ) exp(2ig ),
PCC P c c (2)

where

(S ) =exp[2i(g +i@ )].

Result. —The 8 matrix for resonance reac-
tions is most conveniently represented by the
resonance-pole expansion

S =S iQ-G /(E-h ),
P

whose energy dependence is specified by the
constant pole coordinates 8&, and by the back-
ground matrix S' and the residue matrices G&,
each of which has branch points associated with
thresholds. The representation (1) permits
the simple calculation of cross sections which
are proportional to the absolute squares of the
matrix elements of S. Unfortunately, however,
the parameters needed to specify S in the form
of Eq. (1) are not independent dynamical vari-
ables but rather satisfy complicated relation-
ships which arise chiefly from the requirement
that S be unitary. In previous work the nature
of those relationships was explored by means
of models of Eq. (1) having relatively simple
analytic forms' and by means of numerical
calculations. '&' A useful way of stating such
results is to relate sums or averages of the
parameters in Eq. (1) to the elements of the
average 8 matrix (S'). In the absence of direct
reactions, (S) is diagonal, and its elements
are by definition the optical-model scattering
functions for the various open channels.

In the present work we derive a sum-rule
relation between the diagonal elements G&cc
of the residue matrix, summed over the reso-
nance index p. , and the corresponding element
(Szz) of the average S matrix, when the latter
is diagonal. The result can be stated in the
form

The bracket ( )& indicates an average over
p, and D is the average spacing of the real parts
of the pole positions h&. The complex num-
ber $c+i7)c is the optical-model phase shift
for the alternative c in the energy region of
the resonances p, that are included in the av-
era, ge of Eq. (2).

The result of Eq. (2) has important applica-
tions in the calculation of average cross sec-
tions. ' lt also provides a lower bound for an
even more important parameter:

(4)

Here we have used the definition of the optical-
model transmission coefficient

T = I-exp(-4' ).
C C

But perhaps the greatest significance of Eq.
(2) lies in the fact that it provides a general-
ly valid confirmation for the previously discov-
ered behavior of resonance parameters in the
strong-absorption limit gc -~.' In that lim-
it Scc-0 and Tc goes to unity. The relation-
ship

2sinh2q =7' /(1-T )'I
c c c (6)

shows clearly that the left-hand sides of Eqs.
(2) and (4) diverge as Tc-1 and that therefore
no generally applicable upper bound limits the
possible values of 2~(c~cc)p/D or 2n(loppy () pl&
Heretofore it has been widely assumed in the
literature on resonance reactions that the above
parameters cannot exceed the value of unity
(or, in a few instances, the value of 2.0). The
origins of these misconceptions have been dis-
cussed in Ref. 1. By substituting Eq. (6) into
Eq. (2) it is easily verified that all the special
models of Ref. 1 satisify the sum rule (2).

Proof. -To prove Eq. (2) we consider all the
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poles p of S whose Re~& lie in an energy in-
terval ~ centered on E, and containing no
thresholds and (by choice) no branch cuts. We
calculate the sum of the residues G~ of these
poles by integrating S along a closed contour
surrounding the 8&. We choose for this con-
tour a rectangle of midth 4F- in the direction
of the real axis and of height 2& in the direc-
tion of the imaginary axis, with its center at
E, on the real axis. We assume that the val-
ues of the widths I'& =-Imh& are bounded so
that we can choose W to be large compared
with this bound. Then S mill be essentially
constant along the top and bottom horizontal
legs of the contour and

2wg G =m[s(z -fw)-s(z +iw)]+~,
p, p, 0 0

where ~ is the contribution of the two vertical
legs of the contour.

Identifying S(E,+iW) with {S),' and using the
fact that because of analyticity and unitarity'

we find that

s(z*)=s* '(z),

2m+ G = ~((S~) '-{S))+b, .

On the average (over many different sets of
poles 8&) the contribution & is expected to van-
ish. This, together with the requirement that
(S) be diagonal (no direct reactions), and the
definition (3), immediately leads to the result
of Eq. (2). Moreover, the application of per-
turbation theory to Eq. (9) shows that small
direct-reaction amplitudes affect the result
(2) only by terms which are of the second or-
der in the ratios of the average off diagonal
to the average diagonal S-matrix elements.

Discussion. -We note that our sum rule (2)
is a sum rule "on the average" only. This is
as it must be. If there existed any such sum
rule that held exactly for N resonance poles,
it would also have to hold exactly for N+1 poles,
in order to be of any practical use. But a re-
lationship that holds exactly for both a sum
over parameters of any N and %+1 poles must
hold exactly for the parameters of each pole

separately. That no fixed relationship exists
between pole parameters, say between the res-
idue and the width, of a single pole is easily
verified by considering the example of two over-
lapping resonances in any one of the available
unitary reaction formalisms.

The statement that & vanishes on the aver-
age depends on the assumption that (S') does
not va. ry with energy. The definition of (S),
and therefore its energy variation, requires
the specification of an averaging interval and

a resolution function. Our choice S(E, +iW)
={S(E,)) is the average obtained with a I orentz-
ian resolution function of width W. With a
rectangular resolution function one obtains
S(E,+iW) = ( I+i Wd/dz, )( S(E,)). On the other
hand, with an energy-dependent (S) we have
on the average b (E,)/b, z = 2Wd(S (E,))/dz, . We
see therefore that the error in Eq. (2) due to
the neglect of ~ is of the same order as the
common uncertainty in the average because
of the ambiguity in its definition.

As seen from the results of Refs. 1-3, the
values of the widths I

&
also tend to infinity

as g- ~. This means that in some situations
our requirement that W» I & cannot be satis-
fied in practice because some or all widths are
as large as or larger than any useful averag-
ing interval. At what point this occurs will
depend on the particular situation, ' that is, on

the transmission coefficients of all competing
channels, on the proximity of thresholds, etc.
In such cases one can adopt one of two attitudes.
Either one can say that the process of averag-
ing has lost its usefulness, or one can compare
averages with the expectation values predict-
ed by the method of the statistical S matrix. '

*%'ork performed under the auspices of the U.S.
Atomic Energy Commission.
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