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problem has been discussed by Yang and Yang.
In their notation the Hamiltonian is

For 6 ~ 1, the two terms may be written

H(A) =-—,'Q(o o '+o v '+so o ').
x x y y z z

4 measures the anisotropy, and we find the
correspondence

-e/T +~/T 2~/T
2A =e +e -e

The transformation

(2) ~/T
N5/2T

n 2A -exp(ik. )
A (y) =e

j=1 e -exp(ik. )

A (y) =A (y) with 5- -5.
L R

(6)

leaves 6 invariant, as it should. From now

on we may restrict ourselves to 6 =-0, or if
q=e&/T, then q~ l.

The eigenvalue A(y) is the sum of two terms,

A(y) =A (y)+A~(y).

lnA (y) |1+lyI)& 1

N g 4 /T 2~
,~+- I p(k)dk ln

The kj's are as given in Yang and Yang,' they
become distributed with a density p(k) in the
limit N —~. The free energy per site E, with
applied field, is

E=min {-Ey-(T/N) in[max(A (y), A (y))D. (8)
y

In the limit N-~,

5/T 2 5/T(2A-e ) -2(2A-e ) cosk+1

2(cosh'-cosk)

We then find that for b, &1, A&(y) ~ Al (y).
The singularities in the thermodynamic func-

tions occur in y at y =0, 6 &1; and in T at 6
= -1, y = 0 and 6 =+1, all y.

The author would like to thank Professor
C. N. Yang for drawing his attention to E. H.
Lieb's solution of the ice problem.

Note added in proof. —We recently received
a preprint from E. H. Lieb, treating the Rys
E model in a similar way with similar results.
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The stability of a collision-dominated, weak-

ly ionized plasma column confined in a mag-
netic field has been considered by a number
of authors, ' ' and their results have been sub-
stantiated by experimental observations of in-
stabilities in positive column-type discharges.
These instabilities are caused by differential
mobility of the charged particles in the applied
or self-generated equilibrium electric fields.

Our concern here is with a more prevalent
universal mode, related to some previously
derived drift modes, that also grows via dif-
ferential drifts but sets in when the column
is somewhat more highly ionized. Thus the
model applies to such low-temperature labo-
ratory plasmas as those generated by a differ-
entially pumped hollow-cathode discharge.

We have carried out an analysis for such a
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=n(x) exp[i(yy+kz-( t)],

y(x, y, z, t) =y(x) exp[i(yy+kz (ut)]. - (2)

After standard but tedious reductions, we
obtain two simultaneous differential equations
for the perturbations nz and ne. In these, we
replace the differential gradient operator &/&x

P

QxB

x B
2

(c)

FIG. 1. Axial-diffusion-driven instability.

highly ionized two-fluid plasma and found that
the growth rate of the modes driven by the equi-
librium electric field indeed decreases, ' then
the more prevalent universal mode dominates.
A related prior analysis by Galeev, Oraevskii,
and Sagdeev has shown that such a column is
unstable in the presence of longitudinal ther-
mal conductivity. The instability is, in fact,
more general and will occur for any longitudi-
nal electron motion either from density or tem-
perature gradients.

Our analysis is based on the usual linearized
two-fluid model with finite resistance due to
presence of some neutral particles. The equa-
tions are written for Cartesian slab geometry.
For a cylindrical plasma column (the config-
uration later described in Fig. 1), we associ-
ate r=—x, ~8=—y, z=z. This association is
also customary, and saves some algebraic
complexity. By combining the continuity and
momentum equations, we obtain two equations
for the perturbed density and potential functions
of the form

n. (x, y, z, t) =n (x, y, z, t)

—= 8/Br by 1/p, where p is a characteristic length
over which the plasma density changes consid-
erably. Here p ~xo, where xo is the x dimen-
sion of the plasma, or the radius if the plas-
ma is a cylindrical column. The determinant
of the two (now) algebraic equations is set equal
to 0 for nontrivial solutions, yielding a disper-
sion relation among ru, k, x» P, etc. The con-
dition Im(&u) = 0 determines the final stability
criterion, and we write it as follows:

(P, + P, )(b, P. , +b, P.,)+. (n, n, )(-(,P.,+ (. ,P,).
-(p. -p, .)(5 p. .—5.p, ) &0 (stable).

e i e i i e (3)

Here, we have defined

(((' /x + y ) + k D
e e& 0 e

b. =D. (w'/x 2+y2)+k2D. ,i i~ 0

p =[b ((( /x +y +1/2p')+k2b 1T
e e~ 0 e e'

P. = [b. (7(2/x 2+ y2+ 1/2P2)+k2b. ]T

=yb & +kb E,
e eHx e z

g. = yb. & -kb.E,
2 ZN X i

V, = (y/p)b, ~T,

(,. = (y/p)b, .„T,,
in which D and b are the diffusion and mobil-
ity coefficients, and T is the temperature.
The subscripts e and i refer to the electrons
and ions, respectively, and the symbols & and
H designate the perpendicular and Hall direc-
tions with respect to the applied magnetic field.

The stability criterion contains three terms.
The first is positive definite and represents
dissipation effects which are always stabiliz-
ing. The second term contains the effects aris-
ing from differential drift (the term qe-qi)
of the two fluids in equilibrium electric fields.
Since that term will be negative for some per-
turbations, those effects always tend to desta-
bilize and lead to the modes discussed by Ka-
domtsev and Nedospasov' for. longitudinal elec-
tric fields, and by Hoh and Simon' for trans-
verse electric fields. Making the proper sim-
plifications, we find the same stability crite-
ria derived by those authors from Eq. (3). Our
concern here is with effects arising from the
differential drifts (pe-pi) given by the third
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term in Eq. (3).
For very weak magnetic fields (i.e. , the pro-

duct of the ion cyclotron frequency and the ion
collision time is much less than unity, corre-
sponding to the cases considered by the authors
in Refs. 1-3), it is stabilizing. However, as
the effect of the magnetic field begins to be
felt by the ions, we achieve the state where

~e~i ~ ~i&e and the differential drift: is desta-
bilizing. In such cases, the ratio of the third
to the second terms in Eq. (3) is

and therefore this differential-drift destabiliz-
ing effect is dominant in plasmas in which Te
»Ti, i.e., in most differentially pumped dis-
charges.

The mechanism of the instability can be un-
derstood physically by considering the model
shown in Fig. 1. A radially inhomogeneous
plasma column of density n~ develops some
helical or kink perturbation as shown in Fig. 1(a).
The density is then nonuniform along the mag-
netic field lines, being higher at point I' than
at point Q. The electrons diffuse easily along
the field lines, tending to set up a new equili-
brium with point I' positive a.nd point Q nega-
tive. Further development of the instability

is shown at the cross section through I', in
Figs. 1(b) and 1(c). A potential difference now

exists across the plasma, producing the elec-
tric field E. For the magnetic field & as shown,
Hall mobilities p, eH and p, iH drive electrons
and ions downward; but p, eH&JLtiH for a finite-
resistivity plasma column, and a second space-
charge separation develops as in Fig. 1(c).
The resulting second electric field component
E, causes a second Hall flow in the E,x B di-
rection —in the direction of the original per-
turbation. We see that this instability will be
easy to excite, being driven (in part) and not
stabilized by axial electron diffusion. The ef-
fect disappears in the limit of no electron-
or ion-neutral collisions. Then the Hall drift
velocity of the electrons and ions becomes equal,
and the validity of our partially ionized plas-
ma model breaks down also.
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The hexagonal-close-packed (hcp) phase of
solid He~ has exhibited anisotropy in sound-ve-
locity measurements'~' and thermal-conductiv-
ity measurements. ' Interpretation of these da-
ta requires a knowledge of crystal orientation.
Optical birefringence can be used to determine
the symmetry axis of hexagonal crystals since
the optic axis coincides with the symmetry ax-
is (c axis). We have made measurements of
the difference in the indices of refraction of
extraordinary and ordinary light in solid hcp
He4 at temperatures between 1.2 and 1.4 K and
pressures between 25.0 and 26.0 atm. We ob-
tain a value Ine —n j =(2.6+0.1)x10 8. A quar-
ter-wave plate for hcp He~ at a wavelength of

6328 A is thus about 6 cm thick.
The sample cells are cylindrical Pyrex glass

chambers with flat end windows. Two differ-
ent cells are used in the experiment, one 5.8
cm in length and the second 2.5 cm long. The
solid is formed by slowly increasing the pres-
sure on the liquid helium in the cell, which is
completely immersed in the outer helium bath
at about 1.2'K, until the freezing pressure is
reached. Pressure is applied through vacuum-
jacketed capillary tubing provided with appro-
priate heaters to keep the capillary tubing from
blocking with solid. Large crystals (on the or-
der of 2 cm') can be grown in less than 5 min

using this technique. Below we present evidence
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