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EXACT SOLUTION OF A TWO-DIMENSIONAL MODEL FOR HYDROGEN-BONDED CRYSTALS
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A model of two-dimensional hydrogen-bonded crystals satisfying the ice rule is present-
ed and solved exactly in the presence of an external electric field. The transfer-matrix
method is used. The model includes, for special values of the parameters, the ice prob-
lem, the Rys I" model of an antiferroelectric, and the Slater KDP model of a ferroelectric.

Recently, Lieb solved the two-dimensional
"ice"problem. ' We report here a generaliza-
tion of his results. We consider a hydrogen-
bonded N xN square lattice with periodic bound-

ary conditions, and allow the hydrogen atoms
to sit off center in either of two positions. We
then impose the "ice rule" that exactly two

hydrogen atoms are near each site. ' We rep-
resent a hydrogen atom near a site by an ar-
row directed along the bond, toward the site.
Then energies are assigned to the various site
configurations. The six configurations for a
site, consistent with the ice rule, and the re-
spective energy assignments of our model,
are shown in Fig. 1. We then apply an exter-
nal electric field F in the vertical direction,
giving an energy -E to each up arrow, +E to
each down arrow, and zero to the horizontal
arrows.

5=& =0 is the ice problem, ' previously

~Itj

solved by Lieb'; 5 =0 is the Rys E model of
an antiferroelectric, ' and e =+—,'5 is the Slater
KDP model of a ferroelectric. '

We first set F. = 0 and construct a transfer
matrix A, whose elements are between two

successive rows of vertical arrows, and are
given by

(matrix element of A between rows 1 and 2)

=a(1, 2)

=+exp(-1/T[energy of the intervening sites]].

The summation is over all ways of placing the
intervening row of horizontal arrows. Note
that if n is the number of down arrows in row

1, A(l, 2) = 0 unless row 2 also has n down ar-
rows. Thus A conserves n.

Let y =1-2n/N, and A(y) be the largest ei-
genvalue of A for given y. The partition func-
tion Z is given by

Z = max fexp [EyN /T][A(y) ] j.2

+ R/2, + Sjg

FIG. 1. Allowed configurations and energy assign-
ments.

We find that the eigenvector of A correspond-
ing to the maximum eigenvalue for given y,
A(y), is identical to the eigenvector of the ani-
sotropic chain of spin-spin interactions with
minimum energy for given y. The spin-spin
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problem has been discussed by Yang and Yang.
In their notation the Hamiltonian is

For 6 ~ 1, the two terms may be written

H(A) =-—,'Q(o o '+o v '+so o ').
x x y y z z

4 measures the anisotropy, and we find the
correspondence

-e/T +~/T 2~/T
2A =e +e -e

The transformation

(2) ~/T
N5/2T

n 2A -exp(ik. )
A (y) =e

j=1 e -exp(ik. )

A (y) =A (y) with 5- -5.
L R

(6)

leaves 6 invariant, as it should. From now

on we may restrict ourselves to 6 =-0, or if
q=e&/T, then q~ l.

The eigenvalue A(y) is the sum of two terms,

A(y) =A (y)+A~(y).

lnA (y) |1+lyI)& 1

N g 4 /T 2~
,~+- I p(k)dk ln

The kj's are as given in Yang and Yang,' they
become distributed with a density p(k) in the
limit N —~. The free energy per site E, with
applied field, is

E=min {-Ey-(T/N) in[max(A (y), A (y))D. (8)
y

In the limit N-~,

5/T 2 5/T(2A-e ) -2(2A-e ) cosk+1

2(cosh'-cosk)

We then find that for b, &1, A&(y) ~ Al (y).
The singularities in the thermodynamic func-

tions occur in y at y =0, 6 &1; and in T at 6
= -1, y = 0 and 6 =+1, all y.

The author would like to thank Professor
C. N. Yang for drawing his attention to E. H.
Lieb's solution of the ice problem.

Note added in proof. —We recently received
a preprint from E. H. Lieb, treating the Rys
E model in a similar way with similar results.
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The stability of a collision-dominated, weak-

ly ionized plasma column confined in a mag-
netic field has been considered by a number
of authors, ' ' and their results have been sub-
stantiated by experimental observations of in-
stabilities in positive column-type discharges.
These instabilities are caused by differential
mobility of the charged particles in the applied
or self-generated equilibrium electric fields.

Our concern here is with a more prevalent
universal mode, related to some previously
derived drift modes, that also grows via dif-
ferential drifts but sets in when the column
is somewhat more highly ionized. Thus the
model applies to such low-temperature labo-
ratory plasmas as those generated by a differ-
entially pumped hollow-cathode discharge.

We have carried out an analysis for such a
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