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ments. '&' (2) (T»)i(T»), is small compared
to (iT»),(iT»), . (3) (T,o),(T,e), is small com-
pared to one. With these approximations, which
are consistent with all available data, ' ' we
can write

R-L
0.28 8+L+U+D '

from which Fig. 2 was prepared. Even when
the data, are presented in this form, where most
of the sensitivity to the first-scattering tensors
is removed, agreement between the available
predictions and the data is poor. '3

In conclusion, the present results appear
to be in good agreement with earlier measure-
ments (see Fig. 2); however, presently pub-
lished d-n phase shifts are inconsistent with
the present data. It has been demonstrated
that a deuteron beam with useful vector polar-
ization can be produced by n-d scattering.
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A new method of calculating phase shifts for a Bethe-Salpeter equation is presented.
Tbe scattering amplitude is calculated below elastic threshold using tbe differential equa-
tion and variational methods, and then continued to tbe elastic-scattering region to find
phase shifts.

Becently Schlessinger and Schwartz present-
ed a method of finding phase shifts in potential
theory by solving the Schrodinger differential
equation for the scattering amplitude for ener-
gies below threshold and continuing it to the
scattering region. ' In this paper we report
a variation on their method, involving an on-
mass-shell continuation, that has proven suc-
cessful in solving a Bethe-Salpeter equation. '
The on-shell amplitude satisfies a simple uni-

tarity relation, and this can be used advanta. -
geously in performing the continuation. We
calculate below threshold in order to avoid the
problems of solving a singular integral equa-
tion for the phase shifts. s

The differential Bethe-Salpeter equation in
the ladder approximation for spinless particles
of equal mass m is of the form

uy (x) = V(x)y (x),
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where k =(O, k), and lkP=-,'E'-m'. We are in-
terested in this equation below elastic thresh-
old (E'&4m'), where the Wick rotation can be
performed. 4 In the four-dimensional Euclidean
metric, X) takes the form'

u = (- --'E'+m')'-E'(s/sx )'

where

The T matrix is defined as

T(k', k) = fd xe V( )y ( ).

Let us define the scattered part of the wave
function Xk(x) by

yk(x) = qk(x) + Xk(x),

(4)

8 8
~ 8x 8x

V V

For mass- p, exchange, the potential is

v(x) = (4 px/lx l)z, ( p. lx l).

where yk(x) is the free wave term e'k . The
differential equation for Xk(x) is

&Xk(x) = V(X) Xk(x) + V(x) yk(x) (S)

(&) We can write a Kohn-type variational princi-
ple' for the T matrix based on Eg. (S):

T(k', k) = fd4x X,*(x)(S-V(x))X (x) + fd'x X,*(x)V(x)&p„(x)

+ fd4x y, *(x)V(x)X (x)+ Jd4x y, *(x)V(x)y„(x).

This variational principle can be applied when
the integrals are well defined. For an energy
above threshold, the asymptotic behavior of
the wave function Xk(x) for large x4 is a grow-
ing exponential, ' and thus the derivative term
in Eq. (7) is not well defined. However, below
threshold, the wave function is exponentially
damped, ' and there exists an energy region
where all the integrals are convergent. In prac-
tice, the application of this variational princi-
ple is considerably simpler than the Schwing-
er variational principle based on the integral
equation used by Schwartz and Zemach. ' Our
method amounts to solving the bound-state equa-
tions using the method of Schwartz' but with
an inhomogeneous term.

If we do a partial-wave analysis of these equa-
tions, we can calculate Tf(E') in the region
4(m'-p') &E'&4m', i.e., between threshold
and the second Born contribution to the left-
hand cut. The integrals diverge below this point,
because V(x)yk(x) grows exponentially there.

The analytic continuation is performed using
the E matrix defined by

fc, (E )-X,(E )

=Q a (E) l+Qk(E)2i " 2i
i=o i=1

{l0)

Im (E )

E plane2

4(m'- ') 4m2-~2

!
The analytically continued unitarity equation
implies that Ki(E2) is analytic in E~ at thresh-
old, and thus by employing the E matrix, we
have removed the threshold branch point. ' Fig-
ure l shows the cut structure of Ki(E') in the
E' plane in the region of interest.

Before doing the continuation to the scatter-
ing region, we first remove the cut contribu-
tion Ecut(E') between 4m'-4 y~ and 4m'- p',
thus enlarging the region of analyticity. The
continuation is done using a Pade form as in
Ref. 1,

where

(s)
4m

Re (E )
2

(2m +p. )

T (E ) = [exp(i5 ) sin5 ]/p,

p = (-,'E'-m')"'/S~E

FIG. 1. Cut structure of E&(E ) showing the first in-
elastic threshold and the first two contributions to the
left-hand cut.
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2
3

5
6
7
8

S.Z. values

—0.2420
—0.3147
—0.3277
—0.3048
-0.3083
-0.3093
—0.3119
—0.3097

0.2703
0.2674
0.2672
0.2666
0.2670
0.2663
0.2731
0.2684

E =5.6, X=3, p =m=1.
bg2=5 2, X=O 7, ~ =m=1

We extrapolate with these functions and then
add Rent(E') back in.

For a strong attractive potential with a deep-
ly bound state, i.e., ~=3, p, =m, the S-wave
phase shift was obtained to at least 2% in the
entire elastic-scattering region. Close to elas-
tic threshold and for weaker potentials, the
accuracy was considerably better. The input
numbers for the extrapolation were good to
four or five places. Table I gives a sample
of the stability of the extrapolation.

Table I. A sample of the convergence of the extrapo-
lation for two attractive potentials upon increasing the
order of fitting. The S.Z. values were taken from the
Schwartz and Zemach calculation described in Ref. 5
{private communication). Cancellations in the fitting
generally limit the meaningful size of fitting functions
to n =5 or 6 for the accuracy of our input numbers for
the extrapolation.

In conclusion, we find that because of the
high accuracy of the variational method below
threshold, it is possible to get phase shifts
in the elastic region by extrapolation using the
simpler differential-equation methods and mod-
est computer time. Roughly two significant
figures are lost in the extrapolation.
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In a recent Letter Adler' has remarked that,
assuming the validity of the hypotheses of (a)
current algebra' and (b) partially conserved
axial-vector current, ~ the experimental sim-
ilarity of the R,' and g decays into three pions
within their Dalitz plots "must be regarded
as an accident" in the usual picture of p decay.
This is because whereas in the linear-matrix-
element approximation the above hypotheses
give the correct prediction of the R, —m + v + ~'
matrix element (under the assumption that the
observed linear matrix element inside the Dal-
itz plot can be extrapolated to the points where
the pion four-momenta vanish), the same ap-

proximation and hypotheses imply that q —3~
with total isospin T =1 (or 3) is forbidden. ~'

This forbiddenness exists not only in second
order in the usual CP-invariant electromagnet-
ic current, but also in fourth order. ' The cur-
rent-algebra success in correlating E, -~+
+v +m' and the experimental similarity of the
three-pion decays of E,' and g led Adler' to
the possibility of circumventing this "accident"
by investigating the consequences of an addition
to the usual electromagnetic current, J&, of
a piece && which violates &strong (and ~strong)
invariance. ' With suitably postulated equal-
time commutation relations for K& with the
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