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Azimuthal asymmetries produced in d-o.'double scattering have been measured at ten
second-scattering angles. Both scatterings take place at the same center-of-mass ener-
gy. Published sets of phase shifts are inconsistent with the present measurements. It
has been demonstrated that e-d scatterings can be used to produce a deuteron beam with
useful vector polarization at energies near 10 MeP.

d-n elastic scattering remains of great in-
terest because of its potential usefulness as
a source of polarized deuterons and as a deu-
teron-polarization analyzer. A large amount
of work has been done on d-n scattering in the
past two or three years. ' ' However, the num-
ber of phase-shift parameters is large, and
it appears impossible to derive even approx-
imately correct phase shifts without using a
large amount of polarization data.

Prior to the present work, all studies of d-n
polarization have made use of (1) the s-wave
reaction He(d, p)'He as an analyzer or (2) scat-
tering of polarized deuterons obtained from
a polarized ion source whose calibration depend-
ed, to some extent, on the mirror reaction
T(d, n)'He.

Unfortunately the 'He(d, p)'He or T(d, n)~He
s-wave angular distributions are sensitive on-
ly to the second-rank tensor components of
the deuteron polarization and not the vector
polarization. Also, at present there is some un-
certainty in the analyzing power of this reaction.

Deuteron double-scattering measurements,
although experimentally quite difficult, offer
an independent method of obtaining polarization
information. In view of the rapid development
of polarized-ion source techniques, we view
our measurements as primarily of value in

(1) helping to provide a standard for deuteron-
polarization calibration for ion sources, and

(2) determination of the d-n analyzing power
for possible use in "triple-scattering" type
experiments.

The differential cross section for the second
scattering in a double-scattering experiment
is given by

o(8„y,) = cr,(8,)[a(8,) + b(8,) coscp, + c(8,) cos2y, ],

where

a(8,) = 1+(T„),(T„)„
b(8,) = 2((iT, ) (iT ) +(T ) (T,) ),

c(8,) = 2(T„),(T„),.
The unpolarized cross section is a, (8,) and 8,
is the c.m. angle. The parameters T&y are
those defined by Lakin' and further elucidated
by Satchler. ' The tensors with subscript 1
characterize the once-scattered beam and are
referred to the incident laboratory direction
for the second scattering (as z axis). The ten-
sors with subscript 2 are the polarization val-
ues which would have been produced by an un-
polarized beam and are referred to the outgo-
ing center-of-mass direction (as z axis). The
y axis for both sets is in the direction kin ~kout.

In our experiment, we bombarded a liquid-
nitrogen-cooled deuterium gaseous target with
18-MeV n particles from the Los Alamos vari-
able-energy cyclotron. The -12-MeV deuter-
ons recoiling at 29' (center-of-mass angle 8,
=122') were then passed through a quadrupole
focusing lens, " slowed with foils to 9 MeV (so
that the first and second scatterings would oc-
cur at the same c.m. energy) and allowed to
enter a 'He gas-filled chamber. Scattered deu-
terons were detected with four pairs of E-~
semiconductor detectors set at a given 0, and
at y, =0, 90, 180, and 270'. (The total counts
recorded in each of these y directions will be
referred to as L, U, R, and D, respectively. )
An angular resolution of +4' (c.m. ) was used
for both first and second scatterings. Coinci-
dence events were recorded in three-param-
eter form (counter number, E, ~) event by
event on magnetic tape. The second scatter-
ing chamber was designed to be rotated about

966



VOLUME 18, NUMBER 22 PHYSICAL REVIEW LETTERS 29 Mar 1967

the beam axis. Thus, a measurement at a sin-
gle angle 8, consisted of four runs with the cham-
ber rotated through 90' after each run. Count-
er efficiencies, small differences in 6„and
differences in total integrated current cancel
out if the following ratios are defined:

R (a+c}-f (R,R~@,)'"
L (a+c) +b (L,L2LsL~)

U+D a c(-U, U, U, U,)"4+(D,D,DQ, )'~~

R+ L a +c (R,R,RQ~)' '+ (L,L,L,L4)'" '

where, for example, A, is the number of counts
recorded in telescope 1 when it is at y, = 180 .
The angles y, =90' and 270' (U and D) are in

principle equivalent; however, the ratio (U+D)/
(R+L) is essentially independent of beam po-
sition and direction and therefore has a very
small systematic error. As in the spin- —,

' case,
R/I, is sensitive to the alignment and position
of the beam in the horizontal plane. Accord-
ingly, the chamber was aligned to within 0.15'

I
I

I

1.8—

by a combination of (1) angle determination by
Rutherford scattering from gold and (2) posi-
tion determination by means of nuclear emul-
sions. The machine instability limited the align-
ment quality to the value quoted. This uncer-
tainty could result in an error in R/L as large
as 3% for the three smallest angles but no more
than 1 % for the remaining angles.

In Fig. 1 the results obtained for the two ra-
tios are shown together with the predictions
from the phase shifts obtained by McIntyre and

Haeberli. ' Although geometrical corrections
have not been made, runs with better angular
resolution gave consistent results. " The agree-
ment between the predicted and measured asym-
metries is poor. It should be pointed out that
the asymmetries are essentially proportional
to the tensors which characterize the first scat-
tering. Thus, small changes in the phase shifts
can produce a large change in scale factor with-
out appreciably changing the shape of the curves.
For example, although the predicted values
of (U+D)/(R+ L) are all within 1 /o of unity,
the shape of the curve is similar to the observed
curve.

In Fig. 2 we show the values of (iT»), extract-
ed from the data of Fig. 1. Several assumptions
are made in order to do this: (1) The beam
polarization (iT»), was determined to be -0.28

by normalization to the Wisconsin measure-
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FIG. 1. The azimuthal asymmetries R/L and (U+D)/
(R+L ) produced in 4He(d, d)4He double scattering. The
energy for both scatterings corresponds to Ed = 9.0 MeV.
The first scattering angle is 122 (c.m.). The predict-
ed asymmetries from the phase shifts of McIntyre and

Haeberli are shown.

FIG. 2. Deuteron vector polarization &i&«)2 extract-
ed from the asymmetry data shown in Fig. 1. The pre-
dictions from the phase shifts of McIntyre and Haeberli
and of Senhouse and Tombrello are shown. The value
(-0.28) of (iT&&)i was obtained by normalization to the
measurements of Trier and Haeberli (solid rectangles}.
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ments. '&' (2) (T»)i(T»), is small compared
to (iT»),(iT»), . (3) (T,o),(T,e), is small com-
pared to one. With these approximations, which
are consistent with all available data, ' ' we
can write

R-L
0.28 8+L+U+D '

from which Fig. 2 was prepared. Even when
the data, are presented in this form, where most
of the sensitivity to the first-scattering tensors
is removed, agreement between the available
predictions and the data is poor. '3

In conclusion, the present results appear
to be in good agreement with earlier measure-
ments (see Fig. 2); however, presently pub-
lished d-n phase shifts are inconsistent with
the present data. It has been demonstrated
that a deuteron beam with useful vector polar-
ization can be produced by n-d scattering.
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A new method of calculating phase shifts for a Bethe-Salpeter equation is presented.
Tbe scattering amplitude is calculated below elastic threshold using tbe differential equa-
tion and variational methods, and then continued to tbe elastic-scattering region to find
phase shifts.

Becently Schlessinger and Schwartz present-
ed a method of finding phase shifts in potential
theory by solving the Schrodinger differential
equation for the scattering amplitude for ener-
gies below threshold and continuing it to the
scattering region. ' In this paper we report
a variation on their method, involving an on-
mass-shell continuation, that has proven suc-
cessful in solving a Bethe-Salpeter equation. '
The on-shell amplitude satisfies a simple uni-

tarity relation, and this can be used advanta. -
geously in performing the continuation. We
calculate below threshold in order to avoid the
problems of solving a singular integral equa-
tion for the phase shifts. s

The differential Bethe-Salpeter equation in
the ladder approximation for spinless particles
of equal mass m is of the form

uy (x) = V(x)y (x),


