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A nonlinear optical propagation effect' has
been found in which a short pulse of coherent
light above a critical input energy, for a giv-
en pulse width v~, can pass through an optical-
ly resonant medium as though it were transpar-
ent; but below the critical energy the pulse en-
ergy is absorbed. For times 7p short compared
to T2', the inverse of the homogeneous broad-
ening contribution to the optical linewidth 1/T„
the effect implies that optical transmission
of coherent pulses can be enhanced in a dissi-
pative medium over that of incoherent pulses.
The basic propagation effect can be analyzed
in the limit of a coherent plane wave, taken,
for example, to be circularly polarized:

Let X solute ions per cms in the optical ground
state present a two-level, inhomogeneously
broadened symmetric spectral distribution func-
tion g(b, ~) to the driving pulse; and let the cen-
ter of the spectrum be tuned to frequency ~,
with ions at transition frequency coo defined
off resonance by amount h~ = ~,-co. The con-
dition co ' «T2*«v «T2' is assumed, where

p
T2*=g(0) is the inverse inhomogeneously broad-
ened linewidth caused by a spread of local sta-
tic crystalline fields, and 1/T, —1/T, '+ 1/T, *.
In the language of magnetic resonance, the two-
level system can be represented' by an effec-
tive macroscopic electric dipole moment P =u,u
+ vov-w, W~/~, where u„v„andzu, are orthog-
onal unit vectors in the fictitious reference
frame rotating at frequency co about the uo di-
rection. At a particular Leo, P is described
by the equation

dP/dt = Px (u, ~$ +m,h(u). (2)

In the undamped Bloch-equations notation, elec-
tric dipole absorption (v) and dispersion (u)

E(z, t) = $(z, t)[E cos((ut —kz)-g" sin((ut-kz)], (1)

where the electric field E propagates in the
z direction with frequency v, 0=2nq/A. , A. is
the vacuum wavelength, and q is the constant
host-medium refractive index. $(z, t) is as-
sumed slowly varying so that

9$ $ 9$« —and «+$.
Bz A. Bt

components combine with a third component
—vW/e (in place of M ), where W is the ion-
energy spectral density per cm', v=2p/h, and

p is the x or Y component of the electric dipole
moment of the transition. ~ After any pulse,
the vector P with Ace =0 is turned through a
net angle

9=~j„$(z,t)dt.

However, $(z, t) is determined by its initial
form at x=0, and by the superposition of all
the dipole sources throughout the spectrum,
as seen from the reduced Maxwell equation
for the forward traveling wave:

&$ (z, t) g & $ (z, t)
Bz c Bt

(3)

j g (L&u)v(z, t, L&u)d(b. &u), (4)

de o.—= ——sin6I,
dz 2 (6)

which has the solution

tan-,'9(z) = (tan-,'9,) exp(--,'oz). (7)

Equation (5) follows from Eq. (7) in the limit
of small 9. Here 0, is the rotation angle for
those ions with b, ~ =0 at z = 0, the entry face
plane of the medium.

The branch solutions of 9 vs z from Eq. (7)
are plotted in Fig. 1(a). Examples of comput-
er plots for $ vs z and t are shown in Fig. 1(b)
for cases 80=0.9m and 60 =1.1m. For initial
pulse areas 8, (m, below the critical area at
9, = w, the pulse area diminishes toward 9 (z)
=0 for increasing z in Fig. 1(a,), a,s shown for
90=0.9m in Fig. 1(b). Above the critical area,

where c is the speed of light in vacuum, f g (b, &u)

xd(h~) =1, and iaP/Btl «~ IPI. For weak puls-
es of coherent or incoherent light which do not
significantly alter the ground-state population,
the decay in intensity at frequency ~ is given
by

$ ()=$ ()
where n = 8v p2+g(0)N/qhc Upon c. oupling Eq.
(2) with (3) and (4) we obtain, for large coher-
ent light intensities,
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completely to the ground state after the pulse
has gone by. Pulse retardation occurs because
the pulse is depleted in energy at its leading
time edge during absorption, but the absorbed
energy is returned to the lagging edge during
emission. Computer calculations show that
a given arbitrary input pulse with 80-2mn di-
vides into n separate 2m pulses of the shape
given by Eq. (8), after traversing some distance
into the medium.

The solution' to the coupled equations (2) and

(4) for a pulse of the form (8) may be found
without the assumPtion that Tg«Tp. The com-
ponents of P are

Np sing
'U (6 &d

~
z q» )

( )
2 ~

2Nph &u T sin2 cp

1+ (6 )2

FIG. l. (a) Branch solutions of 0 vs z with formal
origin at z =0. For a given Op the medium-entry plane
is assigned the corresponding s which defines z =0 in
Eq. (1). For the sample initially in the excited state,
~ evolves in the —z direction. Units of ~ are multiples
of 2o.' ~. (b) Computer plots of h vs z and» for 80
= 0.9m and &p = 1.1~ with arbitrary pulse widths. Initial
shapes are chosen to be Gaussian. The unit of time is
conveniently chosen in terms of input pulse width -7P.
For fixed 00, units of h are determined from Eq. (3).
Units of s are multiples of xo.

a 8, = 1.1~ pulse increases in area [8(z) —fhdt]
toward the limit 2n, when d()/dz = 0. During
this process the pulse loses some energy (-J82dt)
over a number of absorption lengths o. ' and
is reshaped. The 27t pulse formed appears to
be the traveling wave pulse given by

~(z, t) =—sech —I»-—~,
U»

(8)

unique in that it represents the only finite-en-
ergy pulse solution to Eq. (4) which is unatten-
uated and retains its shape. ' The induced po-
larization radiates in such a way as to produce
the same field pulse given above. U is the pulse
velocity and T is the final pulse width. The
final pulse energy in this undamped model is
conserved because any optical ion, independent
of its assigned Ae, is momentarily excited from
its ground state to a coherent superposition
of ground and excited states, and then is returned

with

Nh~ 2 sin'-, y—Wb ,Idzt =
(d 2 1+ (A(d T) (d

t 1 z
$(z, t)dt=4tan ' exp —t=

U

The reciprocal pulse velocity is found to be

U-1—'g o!T "+~g(Ltd)dA(d
c 2wg(0)„1+(a(u)' ' (10)

which reduces to U '= nT/2 for T,*«T and
nT»i)/c. The special results (8)-(10) are val-
id for nonsymmetric g(Ac@) if k in Eq. (1) is
replaced by

CRT 6(dg(DQ))d(6(0)
2zg (0) ~ 1+ (L~T)'

ln actual practice the light pulse enters a
sample with nonuniform intensity across the
beam. Any small portion of the wave front can
be assumed to obey the predictions of the plane-
wave model above for short distances. Small
cross sections of the beam will tend to devel-
op and maintain the 2n condition. Consequent-
ly, the more intense portions of the beam will
exhibit shorter pulse delay times, and less
intense portions will exhibit longer delay times.
Diffraction effects neglected here will become
important after some distance of propagation,
particularly in those regions of the beam which
become sharply collimated.

Assuming phenomenological damping terms
added to Eq. (2) in a manner following Bloch, 2

we find for T,*«T T2', T, and symmetric
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g(b, ~) that

(12)

where T, is the energy-damping time constant,
and the pulse energy per cm' is given by

The constant loss rate is proportional to the
product of the pulse delay time o. T/2 per unit
sample length and the fraction T~*/7 of the ions
excited. The pulse is assumed to deviate on-

ly slightly from the form (8) for a plane wave,
and diffraction effects are neglected. However,
the dependence of k' on w in Eq. (11) (and, there-
fore, the pulse intensity) indicates the existence
of an instability effect similar to self-focusing
for ~ applied to the high-frequency side of the

resonance line. The reverse focusing tenden-
cy should occur on the low-frequency side.

Some predictions of the above plane-wave
model are qualitatively confirmed by initial
experiments we have carried out on a liquid-
helium-cooled ruby-rod sample (0.05% Cr+'
in Al, Os) of —, in. diam, 2 —, in. length, and T,- 10 '0 sec. A Q -switched liquid-nitrogen —cooled
ruby laser served as a pulse source which was
suitably controlled to provide only the plane-
polarized E(2E) —4A, (+—,) output' laser line.
By thermal tuning this transition was resonant
with the 4A, (+&) —E(2E) transition of the sam-
ple with its optical C axis in the z direction.
Input energies for delay experiments were about
3 mJ for 10-nsec pulses; and for transmission
threshold studies a maximum pulse energy of
about 5 mJ in 20 nsec was applied.

Figure 2 illustrates the nonlinear transmis-
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FIG. 2. (a) Energy output versus input ruby-light transmission through sample (arbitrary units). The magnified

(x14) output is attenuated until Polaroid type-47, 3000 speed film is unexposed, thus determining peak transmitted
energy jcm . Error bars represent output fluctuations presumably caused by several uncontrolled characteristics
of the ruby-laser source and the finite steps in the output calibrated attenuation. The dotted datum is the transmis-
sion with the sample at room temperature, and the dashed line represents a linear transmission law. (b) Input

and output laser pulses with sample at room temperature. An optical delay served to separate the two pulses.
The second pulse has traveled through the sample. Sweep speed is 20 nsec per division with signal from a ITT
Model FW-114 vacuum photodiode. (c), (d) Same as (b) except that the sample is thermally tuned by cooling to liq-
uid helium and a &&20 attenuator in output beam path is removed. (e) Output and input pulses with sample at room
temperature. Here the first pulse is the output, and a semiconductor photodiode (Philco L-4501) of small sensi-
tive area is used. Sweep speed is 10 nsec per division. (f) Same as (e) except a &20 output attenuator is removed
and the sample is thermally tuned by cooling to liquid helium temperature. The delay in the resonant sample was
sufficient to cause output and input to overlap. (g), (h) Same as in (f), except the input reference pulse is deleted,
showing greater delay with increased width of the output pulse.
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sion for various input intensities. Weak light,
well below the onset of nonlinear transmission,
was attenuated by more than 10'. The transmis-
sion reveals a reduction of -104 in output pulse
energy for a factor of 6 in the input attenuation.
The anomalous transmission diminishes with
increasing sample temperature, disappearing
completely at 40'K, where the rapid Orbach
relaxation' between the upper levels 2A (2E)—E(2E) imposes the condition T2'( ~~. At the
same time the thermal shift of the optical res-
onance only amounts to about —,

' of a linewidth, '
and the light is nearly completely attenuated.
A large time delay and reshaping of the trans-
mitted pulse through the sample is observed
relative to the input pulse, as seen in Fig. 2.
The delayed pulses are qualitatively in accord
with Eq. (10), where the delay increases with
pulse width 7.. The larger delays correspond
to increases in optical path lengths of about
100 sample lengths, in the absence of Cr+3 ions.

The nonlinear transmission behavior might
be interpreted as a "hole-burning" effect in
which the absorption line is simply saturated
by the leading edge of the pulse. The factors
arguing against such a possibility are chiefly
that a population rate-equation description of
these observations is not valid because damp-
ing times are long at liquid-helium tempera-
tures in ruby; and the large pulse-delay times
cannot be predicted by a rate-equation model.

We stress that the above experimental and
theoretical observations at present are far from
being well understood in terms of the actual
experimental conditions. For example, either
losses associated with T, ' or diffraction could
account for the lack of sharpness in the knee
of Fig. 2. Some complications to be considered
are as follows: phase shifts and multiple modes
in the incident laser pulse; diffraction and fo-
cusing properties of the evolving pulse in the
resonant medium; evolution of the input pulse
towards the ideal hyperbolic secant shape for
nonsymmetric excitation of the g (h&u) spectrum;
and relation of the output pulse shape to T,'.

The transmission effect is applicable as well
to any two-level system, involving magnetic
or electric multipole transitions which are res-
onant to traveling waves in the form of radio-
frequency, microwave-frequency, or phonon

pulse power.
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