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average energy of the electrons, calculated
from the Doppler broadening of the I,> I, peak
(4.35 keV FWHM) compared to the 569.7-keV
peak from Bi?7 (353 keV FWHM), is 6.3 eV.

That of the I, > I, peak (3.98 keV FWHM) is 3.3 eV.

If the lifetime spectra are resolved into
three components, we obtain the following re-
sults:

(1) The long-lifetime component (77,=2.01
+0.04 nsec, ~20%) has a broad angular distri-
bution.

(2) The intermediate-lifetime component (7;
=0.64+0.10 nsec, ~13%) has an angular distri-
bution narrower than that of the long-lifetime
component. It is believed that this component
is due to free-positron annihilations with out-
er atomic electrons.® The extra momentum
contribution in the long-lifetime component

may be due to the orbital momentum of the pos-

itron bound in positronium.

(3) The short-lifetime component (TS=0.33
+0.02 nsec, ~67 %) has a complex origin; be-
sides a narrow component due to the annihila-

tion of singlet positronium, there is some oth-
er decay mechanism with large momentum but
short lifetime.
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DISPERSION IN SECOND SOUND AND ANOMALQOUS HEAT CONDUCTION
AT THE LAMBDA POINT OF LIQUID HELIUM*
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Department of Physics, University of Virginia, Charlottesville, Virginia
(Received 24 April 1967)

The absence of a characteristic length at the lambda temperature T of liquid helium
is used to determine the wave-number dependence of the phase fluctuations and the sec-
ond-sound dispersion relation w =ak¥? where w and &k are the frequency and wave num-
ber and a~ 0.1 cm¥? sec™ . Further predictions are | T—T,| =1/ singular temperature
variation for second-sound damping (7 <T;) and the thermal conductivity (T > T5).

The purpose of this note is to point out some
dynamical consequences of the absence of any
characteristic length beyond the atomic dimen-
sions in an extended homogeneous system at
its phase transition. This similarity property
holds neither below nor above the transition
temperature, where a temperature-dependent
correlation length, which becomes much great-
er than atomic dimensions, is manifested. It
is precisely at the transition temperature that
this length becomes infinite and is no longer
relevant as a characteristic unit. The similar-
ity property then provides a useful means of
connecting the critical behavior of the system
above the transition with that below. In this
way we predict an anomalous dispersion of sec-

ond sound at the liquid-helium lambda temper-
ature, T,, of the form w k%2 (where w and

k are the frequency and wave number, respec-
tively), and a relation between second-sound
damping and the heat conductivity, for temper-
atures T below and above T, respectively.
Both of these quantities are predicted to vary
as |T-T,1~Y3, and recent experimental data
are consistent with this singular behavior.!»?

A complete description of the hydrodynamics
of the superfluid helium at long wavelengths
entails the kinetically conjugate variables of
quantum mechanical phase and mass density
for the superfluid, and the corresponding vari-
ables of normal-fluid velocity and entropy den-
sity for the normal fluid. But because of the
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finite compressibility of the liquid, the quan-
tum mechanical phase fluctuations dominate

the behavior of the Bose field at long wavelengths
and consequently determine the single-particle
Green’s function at separations much larger

than atomic dimensions according to the follow-
ing manner:

Gl o (e —iqa(i’)eiw(i))
o exp[F ()-F(0)]. (1)

¢ (%) is the phase of the superfluid condensate
at point X. Mass-density fluctuations affect
G(r) at small values of » but do not contribute
to its large-separation dependence. Because
the compressibility remains finite as the lamb-
da point is approached, the long-wavelength
density fluctuations are limited and remain
uncritical. Consequently, the phase and entro-
py flucutations are effectively the only variables
free for contributing to critical fluctuations.
The correlation between two points in the liq-
uid at X’ and X, separated by the distance T
=%’-X, is weakened by the differing phases

at these two points.%* Assuming that the high-
er order correlations can be neglected,® we
can identify the function F with the correlation
function for the phase field itself and can write
it in terms of the mean-square fluctuations

of the Fourier components,

Fr)={&X)e X))
= 1)K TaR, @)
where

£ =(loz 1. 3)

~ Because of the isotropy of the liquid, both F(r)
and G (v) are functions only of the magnitude
of the separation ». The similarity property
is expressed by
coryer " @)

b

where the exponent 1+7 is some constant.®
Substituting into Eq. (1) we find that the phase
fluctuations have to be such that

F(0)-F(r)=(1+n)lnr + const. (5)

It is easily verified that the following wave-
number dependence for the phase correlation
function satisfies Egs. (2) and (5):

fle)=[2m*(1+n) /%2, (6)
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At temperatures slightly below the lambda
point the above analysis breaks down at very
long wavelengths and the phase fluctuations
at these long wavelengths have to be comput-
ed differently. Here, the similarity principle
does not apply and we turn instead to standard
linearized two-fluid hydrodynamics.”® The
two-fluid model requires a kinetic energy as-
sociated with superfluid flow of the form

-1 2
=1 v
Egp=2Ps¥s

=3 (0 /) 1o |2, )

Here pg is the superfluid mass density, and

V is the volume; v has the usual gradient re-
lationship with the phase, and we are employ-
ing units in which Boltzmann’s constant is uni-
ty and Planck’s constant equals 27. The clas-
sical equipartition theorem requires the follow-
ing strength of phase fluctuation:

f k) =m*T/p k*

=4mé/k?, (8)
where

E(T)=m*T/4mp
=45 A)(T,-T)7%", ©)

and the temperatures are in millidegrees. For
convenience we have introduced the correlation
length ¢ of Josephson,® Tyson and Douglass,©
and Kane and Kadanoff,!* representing the re-
ciprocal of the wave number for which the short-
wavelength and long-wavelength expressions,
Egs. (6) and (8), become approximately equal.
We can characterize the dynamics of the prob-
lem without entering into all of the details of
the equations of motion by introducing a field
7(%X) canonically conjugate to ¢ (X), whose fluc-
tuations define a correlation function

g(®) = (17 1?). (10)

In the long-wavelength region where two-fluid
hydrodynamics applies, we see from the equa-
tion for the time rate of change of phase and
from the continuity equation for entropy that
7(X) is to be identified with the fluctuations in
entropy density measured in units of S/z, the
average entropy per particle. The correlation
functions correspond to static susceptibilities
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for the two fields individually, and their pro-
duct determines a characteristic frequency
wi; by

wp=T[f @]~ (11)

Substitution of the entropy fluctuation-dissipa-
tion theorem for the specific heat p (T),

=,2 2
£, (0)=nc, (T)/S%, (12)
into Eq. (11) gives
2 2
c =f.k_=.yiﬁ_)§_ (13)
2 k% pc
pey p

for the velocity of second sound. Instead of
ps/p, the standard expression'? contains pg/p,,
as a factor. The difference is proportional
to pg/p,, which measures the strength of the
noncritical density fluctuations relative to the
critical fluctuations of the second-sound modes
and becomes negligibly small at T',.

The empirical logarithmic singularity in the
specific heat corresponds at T, to the homog-
eneous function!s

g(k)=-AInk/k ), (14)

where A =0.9523/5%=1.48n and k.=~ 20 A-1,
Substituting Eqs. (14) and (6) into Eq. (11) now
determines the critical dispersion for second
sound as

w, =ak®?, (15)

where a=T)[31%4 In(k./k)] "%~ 0.1 cm®2 sec™2.
Thus, although the velocity of second sound van-
ishes as the lambda temperature is approached,
this is true only in the limit of very long wave-
lengths. Equation (15) means that at any finite
wavelength the corresponding frequency of sec-
ond sound should be expected to interrupt its de-
crease as the lambda point is approached. It is
important to note that this expected dispersion is
of an anomalous type,™ i.e., the velocity increas-
es with increasing frequency or wave number,
rather than decreasing as is common in the
familiar problems of lattice dynamics, optics

of transparent media, etc. It is also essential
to recognize that the second-sound modes must
become critically damped at T in order for

the frequency spectrum of the 7 fluctuations

to pass continuously into a nonresonant diffu-
sion spectrum representing ordinary heat con-
duction®® for 7> T,. The breadth of this spec-

trum as well as the width of the second-second
resonance for 7 <T, are given by a diffusion
term Dk®. Critical damping at 7', requires
from Egs. (15) and (9)

2y
Dk Zwk

= 2ak3'?, (16)
D= 2ak~V?
~ 2a€1/2

= 1.2><10"‘*IT—T>\I—1’3 cm? sec™! mdeg'’s, (17)

where, as before, we have taken the joining

of the different curves to occur at a wave num-
ber approximately equal to the reciprocal of
the correlation length. For a given wave num-
ber K, critical behavior occurs only within a
temperature width!® of A7T= 3x10~0%%2 cm®/?
mdeg.

Recent measurements of second-sound atten-
uation? and of thermal conductivity® are con-
sistent both in relative temperature dependence
and in absolute magnitude with the singular
behavior predicted by Eq. (17). Direct exper-
imental verifications, by cold-neutron scatter-
ing or Brillouin scattering, of the basic dis-
persion relation Eq. (15) would be extremely
valuable. The shape of the frequency spectrum
of the entropy density fluctuations at T, is ex-
pected to be that of a critically damped oscil-
lator and has to be the same at all wave num-
bers # (simply expanding or contracting as k3/2),
Otherwise an absolute length could be deter-
mined from the spectra, which would be incon-
sistent with the similarity property.
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An apparatus for the use of nuclear adiabatic demagnetization has now produced and
maintained submillidegree temperatures for as long as seven hours. It has cooled 0.45
cm? of He? at various pressures to 4 mdeg K in the liquid state and to approximately 7
mdeg K in the solid state. Measurements of the nuclear-spin susceptibility, specific
heat, and thermal-boundary impedance have been made to these temperatures in the lig-
uid and some preliminary observations made in the solid.

The first measurements® of the properties
of He® below 8 mdeg K indicated a specific-heat
anomaly at 5.5 mdeg K which was interpreted
as evidence of a predicted superfluid transition?
in liquid He®. A large number of measurements
made since that time by the Illinois group® have
exhibited no anomalies and no radical departure
from the predictions of the Landau theory of
Fermi fluids. The measurements reported
here use a different cooling method, different
thermometers, and different measuring tech-
niques from those of the other experiments.
The results indicate that the spin susceptibil-
ity is independent of temperature to within +5%
between 4 and 30 mdeg K. Thus, there is no
transition of the type predicted in which the
spins align antiparallel and the susceptibility
decreases. The specific-heat measurements
are less accurate but if there is an anomaly
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it must be much smaller than that reported by
Peshkov.

The apparatus, similar to one reported ear-

lier,* involves three cooling stages below 1°K:

a He® refrigerator at 0.35°K, a cerium magne-
sium nitrate salt at 0.013°K, and the nuclear
cooling stage. Figure 1 is a schematic diagram

of the nuclear stage. There are two important
thermal barriers between the cold nuclei in
the high-field magnet at the bottom of the sam-
ple and the nuclei of the same copper wires

in the Helmholtz pair where the temperature
is measured. The first is the spin-relaxation
process by which energy can be transferred
from the conduction electrons to the cold nu-

clei. The second is the electronic conduction
along the copper wires. The relaxation is de-
termined by the Korringa relation which says
that the relaxation time, T,, times the temper-



