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This Letter is written with reference to a
paper! written by one of us, hereafter referred
to as I, and to a paper by Harari.?

In I a sum rule was derived for the proton-
neutron mass difference as calculated in sec-
ond-order perturbation theory. The derivation
depended on being able to write unsubtracted
dispersion relations for the forward virtual
photon Compton scattering amplitude. Harari
has argued that one of the dispersion relations
in I does in fact require a subtraction. We
argue here that if a subtraction is needed in
the dispersion relations then the usual second-
order perturbation theory will diverge.

If second-order perturbation theory in the
electric charge e does give a finite answer for
the proton-neutron mass difference then this
mass difference is
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Ip) and |n) are the proton and the neutron state
at rest and j, (x) is the electromagnetic current
operator.

It was shown in I that, by turning the ¢° in-
tegration from the real to the imaginary axis,
AM could be written as
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where we have made the change of variable
0 ;40
q°—~iq°.

Assuming the postulates of local field theo-
ry, we have the Jost-Lehmann representation
for T. Because of the spherical symmetry of
T this can be written, apart from substractions,
as
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where the weight function p(x,v) is real and
is nonzero only over the region

0sx<M, M =nucleon mass;
v=2M[M-(M?=x?)"2]= 0.

For ¢®>0 we have, from Eq. (4), that the imag-
inary part of T satisfies
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where R is the region v +¢®-2x1q!<0.
We also have from I
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where we have introduced the new variable
w=q°-¢*/2M

which makes the nucleon pole position and the
inelastic threshold independent of ¢%; p and
n refer to the proton and neutron state, respec-
tively,
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6(w) is the Dirac 6 function, o and o are
the transverse and longitudinal virtual photon
total cross sections as defined, for example,
by Hand.® Gj, and G, are the magnetic and
electric nucleon form factors.

From Eq. (4), if p(x,v) decreases fast enough
as v — o we can write unsubtracted dispersion
relations for 7 at fixed ¢®>0:
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Inserting this into Eq. (3) we get
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This expression for H(¢?) with Eq. (2) gives
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a similar sum rule to that obtained in I. This sum rule could also have been obtained directly from
Eqs. (4)-(6) without the intermediate step of the fixed-¢? dispersion relations.

According to Harari, Z(¢%,w) will not decrease fast enough as w —  to make the dispersion rela-
tion, Eq. (8), converge. Harai suggests, in fact, that =(¢%,w)—~w°* for large w. This would imply
that one subtraction is necessary in this dispersion relation and also in the representation Eq. (4).
A subtraction in the Jost-Lehmann representation can be made at one point in (g%, (¢°)?) space*—for
example, at the point g®=—(¢°)?=+ €% We then have
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This is equivalent to adding an infinite constant
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into Eq. (4) to compensate for the infinite integral. We can, if we want, take the limit as € ~0. The
value of C is then determined from the known Thomson limit to be C = =(3/M){/2n)%. I T is well
defined by Eq. (10) then H(g?) is well defined by Eq. (3). Putting in the compensating infinite quan-
tities of Eq. (10) separately gives the formula
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We have taken the limit as € = 0. The justification of this manipulation with infinite quantities involves
working directly with the Jost-Lehmann representation. A full discussion of this point will be giv-
en in a later paper.

In order that H(g)? be well defined, Z(q% w)-Z(0,w) must tend to zero or be an oscillating function
of w for large w. Suppose that, in fact, this expression does tend to zero. This implies that when
a high-energy “virtual photon” strikes a nucleon the processes involved are insensitive to an exact
energy-momentum balance so that there is little distinction between real and “virtual” photons. This
seems to us to be a reasonable property to be expected of these cross sections, since at high ener-
gies the structure of most of the final states involved will be very complicated.

What now about the convergence of our final integral over ¢2, Eq. (2)? For g2 > 4M?,
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Experimentally, for fixed w in the low-energy region, Z(¢% w), in magnitude, is a decreasing func-
tion of ¢2. If this is a general feature of these cross sections and if a subtraction is necessary in
the dispersion relations then (1/¢2)H(q?) =~ as q®—~~. Unless some very delicate cancellations are
taking place, for which we can see no a priori reason, the integral in Eq. (2) diverges.
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