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A model based on ladder diagrams in a A@®theory is used to study the first daugh-
ter trajectory in the scattering of unequal-mass particles. It is found that the daugh-
ter pole moves towards the physical region less rapidly than the leading pole, and
develops a smaller imaginary part at the two-particle threshold. The motion of the
daughter pole is determined primarily by three-particle scattering processes. As
a consequence, a model which fails to treat three-particle scattering accurately can-

not give a detailed picture of the motion.

Recently Freedman and Wang' have shown
that for unequal mass kinematics the require-
ments of analyticity of the scattering amplitude
in the energy and momentum-transfer variables
s and ¢ coupled with Regge-pole dominance of
its asymptotic behavior implies the existence
of a whole new set of subsidiary Regge trajec-
tories. For an s-channel Regge pole the posi-
tions and residues of the secondary poles, called
daughter poles, are completely determined
at s =0 by the requirement that they exactly
cancel the s =0 singularities of the leading pole.
If «(0) is the position of the leading pole, the
nth daughter pole will have and(O) =a(0)-n;
and its reduced residue will be proportional
to s and, if » is odd, vanish for coupling to
equal-mass particles. Durand?® had extended
the analysis of Freedman and Wang to show
that daughter poles are a more general phenom-
enon which should also occur in the scattering
of particles with spin. These discussions of
daughter poles provide no information as to
their behavior away from s =0. The ultimate
physical importance of these poles depends on
their energy dependence. Preliminary consid-
erations® based on the ladder approximation
to the Bethe-Salpeter equation indicate that
daughters are more approximately parallel
to the pole and reach physical values of the
angular momentum. If this is really the case,
there should be many physical consequences.
The work reported in this paper is the first
dynamical calculation of the behavior of the
daughter poles away from s =0, and it shows
that these new poles are very different from
the leading poles. In particular it shows that
arguments previously given on the behavior
of daughter poles are invalid because of the
neglect of three-particle effects. Several qual-
itative statements about the motion of the daugh-
ter poles can be made; these in turn suggest
a possible mechanism that might prevent these

new poles from reaching the physical region,
and predicting the existence of a whole new set
of heretofore unobserved particles.

In this paper we discuss the solution of a high-
energy perturbation-theory model which sat-
isfies all the postulates necessary to prove
the existence of daughter poles, contains a
well-studied leading Regge pole, and leads to
analytic expressions for the trajectory and res-
idue of the first daughter pole.* Polkinghorne®
has studied the behavior of an infinite sum of
ladder diagrams in a A¢® theory and, by sum-
ming all terms of the form (Inf)"”/¢, obtained
the complete expression for a leading Regge
pole which approaches [ =-1 in the weak-cou-
pling or infinite-s limit. His analysis was car-
ried out for diagrams in which all masses,
internal and external, were equal; however,
it is trivially extended to ladder diagrams with
unequal masses. The external masses are m,
and m,, the masses on the sides of the ladder
are u and v, and the exchanged mass is x.

The ladder diagrams will not satisfy two-par-
ticle unitarity unless m,=p and m,=v. The
existence proof for the daughter poles is inde-
pendent of unitarity. The diagrams do have
the correct analyticity and leading pole. In
addition, the daughter pole is presumably a
dynamical entity whose coupling to two parti-
cles depends on kinematics but whose motion
is largely independent of this coupling. We
have generalized the approach of Polkinghorne®
to sum all contributions of the ladder diagrams
which are proportional asymptotically to (In¢)"%¢?
in order to obtain a set of Regge poles near
1=-2. A lowest order summation (in the cou-
pling constant) has been performed previous-
ly in connection with a study of Regge cuts.®

We work with the Mellin transform of the
scattering amplitude L(a,s), where

L(a,s)=f0°°d'r‘r_a_1f(s,-1'). (1)

813



VoLuME 18, NUMBER 19

PHYSICAL REVIEW LETTERS

8 May 1967

The summation near o =-2 produces a recur-
rence of the leading pole due to the use of Mel-
lin rather than the Legendre transforms,® a
daughter pole, and two new Regge poles. The
procedure for carrying out the summation is
straightforward, though considerably more
complicated than that near o =-1 because of
the lack of a simple factorization property for
the amplitudes. Since the method of solution
is so involved algebraically, the details will
be presented elsewhere and we will only dis-
cuss the solution here. The poles of the am-
plitude appear as roots of a 4x4 determinant.
There are no simplifications in the full solu-
tion unless the masses on the sides of the lad-
der are taken to be equal (1 =v). In that case,
the Mellin-transformed amplitude to lowest
order in the coupling constant is given by

-2 —2p®
Lla,s)=6G a+2-g%K(s)
(m*=m)/2s _N@.s)]
a+2-g2/u® D(a,s)y
where

gz - 02/167T2, 4p2 =s—2(m12+m22)
+ (mlz"mzz)z/s) 442 :3—4#27

and K(s) is the trajectory function for the lead-
ing Regge pole [K(0)=1/p?].%% The first term
in L(a, s) is just the recurrence of the leading
Regge pole. The second term has the correct
residue and position at s =0 to be the daughter
pole.! The third term, N(&,s)/D(a,s), contains
two new poles near a =-2; they are present

in the equal-mass limit. The significance of
these new poles is uncertain; they will not be
considered hereafter. To lowest order in g°
the daughter pole is a fixed pole. This is the
first indication that the daughter pole behaves
very differently from the leading pole.

If uw=v, the pole, which in lowest order was
identified as the daughter pole, factors out very
neatly from the 4 x4 determinant and both its
trajectory function and its residue can be ob-
tained to all orders in the coupling constant.
The complete expression for the daughter tra-
jectory function is given by the solution of an
equation of the form o +2=F(a,s). The func-
tion F (o, s) is given by an infinite series in
powers of the coupling constant with coefficients
given by integrals over the Feynman parame-
ters associated with ladder diagrams having
both ends contracted. A term by term analy-
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sis shows that at s =0, a;=0;(0)-1 where a;(0)
is the position of the leading pole. The position
of the daughter pole first moves with s in or-
der g*. The slope of the leading pole at s =0

is +g?/6u* and that of the daughter pole is
+0,09g*(u®). More important, however, is the
fact that as functions of s, the integrals in F(a,s)
have no two-particle cuts. The singularity struc-
ture of the trajectory function is identical to
that arising from the diagram sum of Fig. 1(a).
The corresponding sum for the leading trajec-
tory is given in Fig. 1(b). Because of the mi-
nus signs in Fig. 1(a), all two-particle cuts
cancel out term by term from the daughter tra-
jectory. We show below that if u #v the two-
particle cuts enter with coefficients proportion-
al to (u-v)®. The residue of the daughter pole,
at least through g*, has the correct s =0 val-

ue relative to the leading pole and vanishes

to all orders for all s if either the incoming

or outgoing pair of masses are equal. The gen-
eral arguments of Freedman and Wang® only
show that the singular portion of the first daugh-
ter residue vanishes for equal masses. In ad-
dition the residue is a product of two form fac-
tors each of which has its first singularity at
the three-particle threshold due to a cancella-
tion similar to that involved in the trajectory
function. Since the three-particle contributions
of ladder diagrams are not those which would

be expected to dominate a three-particle scat-
tering amplitude, we conclude that our model

is useless for determining the actual motion

of the daughter pole. Such a determination would
require an accurate treatment of three-parti-
cle scattering. This same objection applies

FIG. 1. (a) The diagram sum which describes graph-
ically the analytic structure of the daughter trajectory
function. (b) The corresponding diagram sum for the
leading trajectory.
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to the Bethe-Salpeter calculations of the daugh-
ter-pole motion using the ladder approximation.
Since the motion of the daughter poles should
be independent of external masses, the fact
that our model violates two-particle unitarity
in the external particles should not affect the
above conclusions. However, unitarity does
tell us that the trajectory function for the daugh-
ter pole cannot remain real above the two-par-
ticle threshold. We have considered the effect
of keeping u #v. In this case the daughter pole
mixes in a very intimate way with the two oth-
er dynamical poles near o =-2. In the lowest
order it is one of three roots of a cubic equa-
tion which cannot conveniently be solved ana-
lytically; it can be solved in various limits:
(1) If the exchanged mass A vanishes, the equa-
tion can be solved and the daughter trajectory
is parallel to the leading pole; in this limit
the three-particle threshold is degenerate with
the two particle threshold. (2) For A = (u-v)?
small and s near 0 and well below the two-par-
ticle threshold, we have for the daughter pole

1A A s_A.<.L uz)] 3)
[“12;1 80u° " ut \45 1822

while the leading pole is given by

(@+1) _ﬁ[ “<6+f2>+1<3ig B §—0>] (@)

Note the singular dependence on A% in Eq. (3).
For s approaching +e we find

A Xz(u +y)? A2
2 _i l:l ANLTY) B
(o + ) 3 Toaspr s T 4spy s°

(a +2)

Xz(/J.'i“V) ( 2, 2) A (E+V):’
282y 4suy

+%[ln u2i2+2ni9(s)]g (5)

The corresponding expression for the leading
pole is

(@ +1) =5[1n 5222+21ri9(s)]. ©)
I s Uy

Both of these limits show that although the daugh-
ter pole moves with s in lowest order, it be-
haves very differently from the leading pole.

The daughter pole develops an imaginary part

at the two-particle threshold but at least asymp-
totically it is smaller than that of the leading
pole by a factor s~2. Thus, even in a unitary
model the daughter pole does move parallel

to the leading pole. Three-particle scattering

should still dominate its motion. Qualitative-

ly we can say that the daughter pole approach-
es the two-particle threshold less rapidly than
the leading pole and develops a smaller imag-

inary part there.

Finally the slow motion of the daughter pole
and its small imaginary part above the two-par-
ticle threshold suggest a mechanism which might
prevent the daughter from becoming physical.
Just as each leading Regge pole apparently gen-
erates a set of daughter poles, heuristic argu-
ments indicate that it will also generate a se-
ries of Regge cuts.” The leading cuts arising
from three-particle unitarity have the feature
that the physical-sheet branch point at zero
energy is at the same position as the daughter
pole and it remains fixed for s<pu? For s> u?,
the leading branch point moves according to
the trajectory function of the leading Regge pole,
displaced by one unit to the left in the angular
momentum plane, and with an energy s, = (s*/*
—-u)®. Hence as s increases from 0, the daugh-
ter pole will initially move to the right of the
branch point. At the two-particle threshold,
the daughter pole becomes complex and lies
above the leading cut, whose branch point re-
mains real for s,<4u? Because of the slow
motion of the daughter pole with increasing
s compared to the trajectory function of the
leading pole, there is the possibility that, as
s approaches the three-particle threshold (or
s, the two-particle threshold), the branch point
can lie to the right of the daughter pole. Then,
if the branch point moves upward in the com-
plex plane faster than the daughter pole, the
daughter pole will disappear from the physical
sheet of the scattering amplitude.? Verifica-
tion of this conjectured mechanism for the elim-
ination of daughter poles from the physical scat-
tering amplitude would require an accurate
estimate of the position of the daughter pole
near the three-particle threshold.
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useful discussions and for reading the manuscript.
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IN 77p ELASTIC SCATTERING ARE RESONANCE EFFECTS*
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It is deduced using a very general and simple approach that the differential cross-sec-
tion minimum near the forward direction and secondary diffraction peak in 77 p elastic
scattering in the region from 1.7 to 2.5 BeV/c are resonance phenomena. Experiments
of simple interpretation are proposed to determine if this is the general nature of the
dip-secondary-peak sequence observed in various reactions.

In a recent Letter, Frautschi! suggested that
the minima of the differential cross section
in the reactions ¥ +p — % +p near £=-0.6 (BeV)?
are due to the passage of the P/, Ty, and p
trajectories through a zero near this value
of squared momentum transfer in conjunction
with the existence of Chew’s “ghost-killing”
mechanism? for the 2% nonet. Under these con-
ditions the helicity-flip amplitude (in the ¢ chan-
nel) is expected to vanish in this ¢ region and
thus give rise to a minimum in the differential
cross section in agreement with experiment.
Frautschi considered the fact that the polari-
zation changes sign in that vicinity at 2.1 BeV/c
to be a confirmation of his ideas.®

In the present note we wish to present the
results of an analysis of the 77p elastic differ-
ential cross section and polarization in the re-
gion from 1.7 to 2.5 BeV /c in the spirit of a
very general method we recently proposed.?®
According to our results the near-forward min-
imum of the cross section, the related change
of sign of the polarization, and the secondary
maximum in this reaction are due to the pres-
ence of a resonant amplitude.®

Our method is based on the following two
considerations:

(1) In the energy region of a resonance, any
set of amplitudes that determine a given pro-
cess may be written in all generality as the
sum of two terms: the resonant term plus “the
rest,” which from now on we will simply call
“packground.” This decomposition has the ad-
vantage over the classical partial-wave decom-
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position that the resonant and background con-
tributions behave quite differently as a function
of energy in the region in consideration. Sim-
ilarly, if there is more than one resonant am-
plitude contributing to a given enhancement,

we may separate them from “the rest.”

(2) The behavior of the phase and magnitude
of the contribution from a resonant eigenstate
to a partial-wave amplitude as functions of the
energy is expected to be satisfactorily described
by a Breit-Wigner form.” Therefore, in pseu-
doscalar meson—-spin-3 baryon elastic scatter-
ing, we may write

J . J J
tand, =T, /2[(WR)Z

1 _W]; (1)

J J . J
lfl I—xl smél /k, (2)

where flJ is the resonant eigenstate contribu-
tion to the partial-wave amplitude of orbital
(total) angular momentum I (J), GZJ its phase
or the eigenphase, FZJ the total width, le the
elasticity, (Wg);J the resonant energy, and

k the c.m. momentum.

Although only the existence of one resonance
[N*(2190) of spin-parity I~ ] in the vicinity of
2.07 BeV/c has been established,® as Yokosa-
wa et al. have reported that there might be at
least one other resonating partial wave near
this energy we prefer not to ignore a priori
the possibility of several resonant partial waves
in our analysis. We assume, however, that
if there is more than one partial wave contrib-



