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In a recent Letter Carruthers' has demonstrat-
ed a most interesting connection between the
possible representations of the isospin symme-
try group SU(2) possessed by self-conjugate
spinless bosons and microcausality. The the-
orem, which was derived in the framework
of canonical quantization for free fields, states
that, self -conjugate spinless bosons compris-
ing spinorial (even number of dimensions) rep-
resentations of the isospin group are the quan-
ta of fields which do not commute for spacelike
separation. Carruthers explicitly calcula, tes
the nonvanishing commutator.

We have found a generalization of Carruth-
ers's result in which the dependence of the ar-
gument on canonical quantization and the restric-
tion to free fields is removed. Furthermore,
our results can be stated in a manner immed-
iately applicable to arbitrary internal symme-
try groups and at the end of this Letter we shall
indicate how the generalization to higher (in-
tegral) mechanical spin can be made.

Our proof depends on the following assump-
tions:

(i) The set of scalar fields pa+(x), a =1,
~ ~ ~, N, transform among themselves accord-
ing to an irreducible, unitary representation
of some group Q,

U(g) 'y ( )U(g)=D (g)q +( ),

where U(g) is the unitary operator in the quan-
tum mechanical state space which effects the
group transformation on the states.

(ii) The vacuum is invariant under U(g),

U(Z) io) = to).

(iii) The fields y (x) are self-conjugate,
i.e., there exists some c-number function

Zap(x —x'), such that

y +(x) = fd'x'& (x-x')q (x').a ap p

(iv) The fields commute for spacelike sepa-
ration,

[y (x), y (y)] =0

for (x—y)'&0.
The appearance of the same space-time four-

vector on either side of (1) stamps the group
transformations as referring to internal degrees
of freedom. The invariance of the vacuum,
(2), is, following Coleman, ' tantamount to the
assumption that the group |"is a symmetry
group. Equation (3) is much weaker than the
usual statements of self-conjugation in which

Kap(x —x') has the form

(x-x') =q & -&'(x-x'),
ap a ap

where P -P is a one-to-one mapping of the P's
onto themselves and I q& I

= 1. Whether the
weaker condition (3) has any practical advan-
tage over (5) is difficult to say.

Theorem. —The assumptions (i)-(iv) demand
that the representation of Q provided by the
D(g) in (1) is equivalent to the representation
provided by the complex conjugated D*(g), and
that the transformation from the D*(g) to the

D(g) must be via a symmetric, unitary matrix.
Following Wigner's' terminology the allowable
representations are "potentially real, " i.e.,
it is possible to find a basis in which all the
D's are real.

Proof. —Consider

(0ly (x)y (y) I0)=-C (x—y)a p ap

764



VOLUME 18, NUMBER 18 PHYSICAL RKVIKW LKTTKRS I Mwv 1967

This is a I,orentz-invariant function of x-y and for spacelike separation must be a. function of (x —y) .
From (4),

c ((x-y)') = c ((x-y)')
ap pa

for (x-y) &0 so that C is symmetric in the internal indices.
But

((x-y)') =(oly (x)y (y)lo)=(0IP(g) 'q (x)U(g)U(g)-'p (y)P(g)IO)
ap a p Q

=(oID *(g)q (x)D *(g)y (y) IO)
ay y p5 5

*(g)c ((x-y)'» *(g)
ay y5 p5

Suppressing the space-time variables and noting that theD's are unitary, this may be written as

cD(g) =D*(g)c.
But since

C*CD(g) = C*D*(g)C =D(g)C*C

it follows that

C*C =&I,

and the symmetry of C makes C proportional to a unitary matrix and g is positive semidefinite. If
X c 0 then C ' exists and

D (g) = C -'D*(g)C;

the D's form a "potentially real" representation.
If z =0 then C =0 and applying the Hall-Wightman' theorem to the C p((x-y)') we conclude that

c ((x-y)') = o

(10)

(13)

for any x —y, timelike and null as well as spacelike. But from (iii)

(f ) I 0) II
' = (0 ip (f)p +(f) IO)

=fd' d'xyf( )fx*(y)(Oly (x)y (y)IO&

= fd xd yf(x)f*(y)fd y'K (y —y')(oly (x)y (y') Io)

=0. (14)

Clearly one can also obtain lip (f) IO)Ii=0.
Hence a nontrivial self-conjugate scalar field
theory permits only "potentially real" repre-
sentations of internal symmetry groups, i.e.,
those representations with symmetric C's.

(a) For SU(2) the integral-spin representations
require C antisymmetric. ' Hence the latter
are excluded.

(b) For SU(3), those representations Dg„g,)
with ~, c~, have complex characters and are
excluded. ' The remaining representations with

X, =X, have a symmetric C, and are therefore

allowed.

(c) For a particle with integral mechanical
spin ya &(x) (where the second subscript re-
fers to its space-time properties), it suffices
to require that

for spacelike separation. Now, for spacelike
separation,

(OI y (x)y (y) I 0}
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is symmetric' under the interchange of z and

y and hence must further be symmetric in the
exchange of a and P in order to satisfy micro-
causality. Hence if the representation of the
internal symmetry group is not equivalent to
its complex conjugate via a symmetric matrix
then we must have C = 0 again. The Hall-Wight-
man theorem can again be invoked as for (13)
and the conclusions (a) and (b) above still ap-
ply. Note that the appropriate generalization
of (3) must not mix mechanical spin indices.

One of us (E.K.) wishes to thank Dr P. .Car-
ruthers and Dr. S. Polo for enlightening com-

munications.
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Equation (11) should read

(~A~c~+ ~A~d~)
cd; ab
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