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in reasonable agreement with the experimen-
tal value®® of 4.6 MeV. It is not surprising that
the approximation of keeping only the lowest
lying resonances in the spectral functions leads
to a reasonable value of the 7t-7° mass differ-
ence, since the AI=2 part of the effective elec-
tromagnetic interaction relevant in this case
is well described! by low ¢® values.
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We discuss the convergence and the superconvergence properties of the invariant am-
plitudes which occur in suitable combinations of the propagator functions of the vector
and the axial-vector currents, based on the use of symmetry arguments for the asymp-
totic behavior. The sum rules so obtained for the spectral functions are in good agree-

ment with experiment.

In this note we discuss a general way to ob-
tain sum rules for the spectral functions of
vector and axial-vector currents. Two of the
sum rules we derive have been recently obtained
by Weinberg! under the more restrictive as-
sumption that the pion is massless, so that
the axial-vector current is divergenceless.

Our method exploits the possibility of super-
convergence of amplitudes occurring in suit-
able combinations of the vector and axial-vec-
tor two-point functions. We show that the case
for convergence or superconvergence can be
made on the basis of group-symmetry arguments
alone. This provides some interesting insight
into the relation between the concepts of super-
convergence and group symmetry. Finally,

we show that the sum rules we so obtain are
well saturated by suitable low-lying particle
states.

We start by considering the vacuum expec-

tation values of the time-ordered product of
two vector and two axial-vector currents, whose
Fourier transforms are given, respectively, by
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where 7 and j are the SU(2) indices (¢,7=1, 2).

If SU(2)® SU(2) were an exact symmetry, we
would have A, Vg) = A#VA(q) for all values

of g. However, in nature this symmetry seems
to be broken, but nevertheless one expects that
in the asymptotic limit ¢ -, SU(2)® SU(2) would
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be an exact symmetry. Thus it seems reason-
able to assume that

im o, @-a A @]-o. ®)

q - 00
Writing the general structure
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2 2
=F(q )GW+G(q )ququ+H6“46V4, (4)

where H is the contribution due to the Schwing-
er terms, we observe that Eq. (3) implies (at
least) that F(g?) satisfies a dispersion relation
without subtractions, G(g2?) must be supercon-
vergent, and finally the Schwinger terms in
the vector and axial-vector cases must be iden-
tical. The identity of the two Schwinger terms
has also been noted by Weinberg under some-
what more restrictive assumptions. To make
stronger statements of convergence or super-
convergence on the invariant amplitudes F(g?)
and G(g?), one has to know how fast A #VV(q)
-A uuA(q) goes to 0 asymptotically. Stated oth-
erwise, one has to know beyond what value of
g will the SU(2) ® SU(2) symmetry become “al-
most” exact. If SU(2)® SU(2) is not such a bad
symmetry, one would expect symmetry to “set
in” at somewhat lower values of ¢, so that F(g?)
and G(g?) would satisfy stronger requirements
of convergence than the ones implied by Eq. (3).
These requirements would then lead to sum
rules which are a step closer to the results
of the exact SU(2)® SU(2) symmetry. Clearly,
this argument can be extended indefinitely un-
til the infinite hierarchy of sum rules would
lead to the solution identical with the symme-
try result, i.e., F(g%) =G(¢? =0 for all ¢ and
H=0. For practical purposes, to investigate
the effects of broken symmetry, it is easy to
see at which stage of superconvergence to stop,
since with the assumption of the dominance
of the sum rules by a few low-mass states,
one would already start encountering the sym-
metry result beyond a few steps.

Using Killén-Lehmann representation we
can express F(g?) and G(g?) in the following
forms:

“©p_(m?)—p (m?)
F“Iz):-ifo —Vq—mTAg—dm (5)
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where p and p’ are the corresponding spectral
functions? and Fy is the pion-decay amplitude
defined by

(0jA u21(0) I7*(q) =iF7Tq“/(2610V)“2- (M

In Eq. (6) we have explicitly separated out the
contribution due to the pion pole. The demands
of superconvergence® of G(g?) and F(g?) lead

to the following sum rules of Weinberg! which
contain information of broken symmetry:

®p ' (m?)-p  '(m?)
14 A
f; — dm?®=F _?, (8)

f:o[PV(mz)—pA(mz)]dm2=0. (9)

If we dominate the spectral functions by keep-
ing only the p and A, poles, we obtain Weinberg’s
results.

Since our derivation is not restricted by the
assumption of a zero-mass particle or diver-
genceless currents, it seems natural that one
can extend these ideas to currents of a larger
group, such as the chiral SU(3)® SU(3). Fol-
lowing the same procedure as before, one ob-
tains sum rules similar to (8) and (9) involv-
ing spectral functions of strangeness-changing
vector and axial-vector currents. If we now
assume that the spectral functions of the vec-
tor current can be dominated by the K* pole,
and that there exists a strangeness-carrying
1* resonance denoted by @, which dominates
the axial-vector spectral functions, we obtain
the following result*:

G, 2 M, 2
K* K*

M*[I'TJFK (10
K* Q

where G, and Fy are defined by the follow-
ing matrix elements:

(0} v, S OIEHD) =Gy E #/(2(1011)“2 (11)

and

014 1O IKHQ) =iFya /g VIV (12)
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One can estimate Gg x by dominating the K;3
form factor f,_ by the K* pole, so that

Grn= O 2/ Gy, (13)

where Gg gy is the K*K7 coupling constant
and hence related to the K* width. Using® f,(0)
=-1/¥2, Fg=1.04m, from K;9 decays, and
the known K* width, we obtain

MQ/MK*ﬁl AT, (14)

which gives MQ =~1311 MeV remarkably close
to the mass of the Knm resonance observed at
1313+ 8 MeV .6

Our results so far are based purely on the
asymptotic behavior of suitable combinations
of matrix elements obtained on the basis of
broken chiral-symmetry groups. The constraints

imposed by the SU(3) symmetry alone also lead
to some interesting results. Defining

m

Auv (9)

= Jd'se T oingy ey, Foho,  as)

= fatxe ™% 0 T{le(x)VVlB(O)}I 0,  (16)

and assuming that the SU(3) symmetry becomes
exact in the limit ¢ —«, we have

lim [A W"(q)—AWK(mko. (17)

q—oOO

Proceeding as before, we obtain the following
sum rule:

© (1), 2. (K), 2
/ p_tn)=p “ln )y (18)

m

We assume that the spectral functions are peaked
at the p and the K* masses, i.e.,

p Moy = szé(mz—M pz),

K), 2 2 2 2
p( )(m )=GK* 5(m M, ), (19)
where Ggx has been defined by Eq. (11) and
Gp is analogously defined. Using the current-
algebra result’ Gp'“’=2Mp"’F7T2 and Eq. (13), we

obtain from the sum rule (18) the result
2 _ 2 2 2
Gpenger =/ OM, 2/2F 2, (20)

which leads to a width of the K*,
[(K*) ~46 MeV, (21)

to be compared with the experimental value®

of 50+ 1.4 MeV. It should be noted that the pre-
vious calculations of I'(K*) based on current
algebra® make use of the kaon partially conserved
axial-vector current, which has not been em-
ployed in the present derivation. We would

also like to point out that stronger conditions

of convergence on

tim s "@-2 " @)]

q—ow

than the one used here already lead to symme-
try results in the pole approximation considered.®

One can apply the same technique to the case
of axial-vector currents of the 7 and the K types.
In this case it is easy to see that the resulting
sum rule is not independent but is already con-
tained in the previous sum rules.

The technique of studying the behavior of su-
perconvergence of some suitable combination
of matrix elements on the basis of symmetry
arguments is clearly of more general applica-
bility than the cases considered here. An ap-
plication of this method to scattering amplitudes
and form factors will be treated elsewhere.
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The fact that the symmetry limit is reached earlier
in this case than in the previous cases of the chiral
symmetry groups within the framework of the pole
dominances is indicative of the fact that the SU(3) is a
better symmetry of nature.
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In a recent Letter Carruthers! has demonstrat-
ed a most interesting connection between the
possible representations of the isospin symme-
try group SU(2) possessed by self-conjugate
spinless bosons and microcausality. The the-
orem, which was derived in the framework
of canonical quantization for free fields, states
that self-conjugate spinless bosons compris-
ing spinorial (even number of dimensions) rep-
resentations of the isospin group are the quan-
ta of fields which do not commute for spacelike
separation. Carruthers explicitly calculates
the nonvanishing commutator.

We have found a generalization of Carruth-
ers’s result in which the dependence of the ar-
gument on canonical quantization and the restric-
tion to free fields is removed. Furthermore,
our results can be stated in a manner immed-
iately applicable to arbitrary internal symme-
try groups and at the end of this Letter we shall
indicate how the generalization to higher (in-
tegral) mechanical spin can be made.

Our proof depends on the following assump-
tions:

(i) The set of scalar fields ¢, (x), a=1,
«++,N, transform among themselves accord-
ing to an irreducible, unitary representation
of some group G,

U(g)"(pa+(x)U(g) =DaB(g)<pB+(x), (1)

where U(g) is the unitary operator in the quan-
tum mechanical state space which effects the
group transformation on the states.

(ii) The vacuum is invariant under U(g),

U(g)10)=10). (2)

(iii) The fields (pa(x) are self-conjugate,
i.e., there exists some c-number function
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Kag(x—x'), such that
+ = ’ —ar! ’
¢, (x) = [d* KaB(x X )<pB(x ). (3)

(iv) The fields commute for spacelike sepa-
ration,

[@ 4 (x); 05(y)]=0 (4)

for (x—y)?<0.

The appearance of the same space-time four-
vector on either side of (1) stamps the group
transformations as referring to internal degrees
of freedom. The invariance of the vacuum,

(2), is, following Coleman,? tantamount to the
assumption that the group G is a symmetry
group. Equation (3) is much weaker than the
usual statements of self-conjugation in which
KaB(x—x’) has the form

K g (re) =18 6%, ®)

where 8 —f is a one-to-one mapping of the 8’s
onto themselves and In, | =1. Whether the
weaker condition (3) has any practical advan-
tage over (5) is difficult to say.

Theorem. — The assumptions (i)-(iv) demand
that the representation of G provided by the
D(g) in (1) is equivalent to the representation
provided by the complex conjugated D*(g), and
that the transformation from the D*(g) to the
D(g) must be via a symmetric, unitary matrix.
Following Wigner’s® terminology the allowable
representations are “potentially real,” i.e.,
it is possible to find a basis in which all the
D’s are real.

Proof.— Consider

(0Igoa(x)fpﬁ(y)m}ECaB(x—y)- (6)



