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Using the algebra of currents and the sum rules recently derived by steinberg, we cal-
culate the electromagnetic mass difference of pions and obtaim mz+-~~p = 5.0 MeV.

Recently Weinberg' has obtained sum rules
for the spectral functions of vector and axial-
vector current propagators, from which he
has derived a relation between the masses of
p and &„ in remarkable agreement with exper-
iment. The purpose of this note is to show that
using similar techniques, one can calculate
the electromagnetic mass splitting of the pions.
%e use the soft-pion technique to reduce the
virtual photon-pion Compton scattering ampli-
tude in terms of the propagator functions of
the vector and axial-vector currents. Since,
as we shall show in Eq. (12), the difference
m + -m 0' is independent of the mass of the
pion, we have an a posteriori justification for
the use of the soft-pion technique. Although
we have used partially conserved axial-vector

currents (PCAC) in the reduction technique
and subsequently employ Weinberg's sum rules
which hold when the axial-vector currents are
divergenceless, this apparent inconsistency
may be resolved if we take either of the follow-
ing two viewpoints: (i) After the soft-pion re-
duction, since the expression for m +'-m 0'
is independent of the pion mass, we may at
this stage set m~=0; or (ii) for a, realistic pi-
on mass, Weinberg's sum-rules would presum-
ably' be altered only by terms of the order of

'

(m~/m )', which may be neglected. If we as-
sume that the propagator functions are domi-
nated by the low-lying poles, namely p, r, and
A„our calculation yields a value of mz+-m~o
= 5.0 MeV.

The electromagnetic self-energy of the pion
in the second order is given by'

AF. = (2m) e Re(1/2i) Jd x( OIT[a (x)a (0)]10)((m'1T[V ™(x)V (0)]1n')-(0 IT[V ™(x)V ™(0)]10)), (1)
V p. V p, V

where we have dropped the contact terms proportional to y'a&a&, since the contribution due to these
terms can be made to vanish by the choice of a suitable gauge. In this gauge, the difference of the
squared masses of m+ and m is given by

e2

m '-m ' = — 2m Re~+ ~o 4m

d'q j q q)
q-Le ( pv q' )

x dxe m ITV xV 0~Iv —7t ITV xV 0 Im (2)

Using the soft-pion technique with PCAC' and the equal-time commutation relations, ' we obtain the
expression given bye

e' 4m'~d'q ( q q
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where

(q) = fd xe (OIT[V (x)V (0)]lo) (4)

and a similar expression for b,» (q) with axial-vector currents.
Using the expressions for the two-point functions of the vector and the axial-vector currents given

by Weinberg, ' we obtain the following spectral representations of the propagator functions7:

(OIT[V (x)V (0)]lo) = 4 dm p (m ) d P
3 3 2 2 "4

xe 5 + I -+—5 5 5 x) dmf p'+m' iq 4—p, 4 v4 2
40

(5)

(OIT[A (x)A (0)]IO) = ~ dm p (m ) d pe ! 5 +
0

i
( ( p (m')

+—5 5 5 (x) dm
4 p4 v4 I

(2
+ d Pe . +—5 5 5 (x)F, (8)

2 4 iP x p, v (4) 2

7T g p —2'g 4 p4 V4 7r
'

where the spectral functions pV(m') and p&(m') satisfy the following sum rul. es'.

J fp (m')-p (m') )dm'=0

with

"~p (m')-p (m')
V A

"0
dm'=F 2,

7T
' (8)

Substituting Eqs. (5), (6), and (8) in Eq. (3), we obtain

3ie' m ~ 'd~q ~ p (m') —p (m')

~+ w' (2~)'C ' . q' q'+m'
0

We now approximate' the spectral functions
by retaining only the p and A, poles, i.e. ,

p (m') =g '5(m'-m '),
V p p

p (m')=g '5(m'-m '). (lo)
(12)

!
Using the value of g&' from either current al-
gebra or the observed p width, we have g&'
= 2mp'E~~, so that we finally get, from Eq. (11),

Vl —Pl
(3 ln2) e'

7T+ vo 2m 4v p
'

Equation (9) with Eqs. (7) and (8) now leads to

e2m 4g2
m ~ -m '=(3ln2) —c,n+

which gives the mass difference

+-m =5.0 MeV,
7T+
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in reasonable agreement with the experimen-
tal value' of 4.6 MeV. It is not surprising that
the approximation of keeping only the lowest
lying resonances in the spectral functions leads
to a reasonable value of the ~+-~~ mass differ-
ence, since the ~I = 2 part of the effective elec-
tromagnetic interaction relevant in this case
is well described" by low q' values.
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We discuss the convergence and the superconvergence properties of the invariant am-
plitudes which occur in suitable combinations of the propagator functions of the vector
and the axial-vector currents, based on the use of symmetry arguments for the asymp-
totic behavior. The sum rules so obtained for the spectral functions are in good agree-
ment with experiment.

In this note we discuss a general way to ob-
tain sum rules for the spectral functions of
vector and axial-vector currents. Two of the
sum rules we derive have been recently obtained

by Weinberg' under the more restrictive as-
sumption that the pion is massless, so that
the axial-vector current is divergenceless.
Our method exploits the possibility of super-
convergence of amplitudes occurring in suit-
able combinations of the vector and axial-vec-
tor two-point functions. We show that the case
for convergence or superconvergence can be
made on the basis of group-symmetry arguments
alone. This provides some interesting insight
into the relation between the concepts of super-
convergence and group symmetry. Finally,
we show that the sum rules we so obtain are
well saturated by suitable low-lying particle
states.

We start by considering the vacuum expec-

tation values of the time-ordered product of
two vector and two axial-vector currents, whose
Fourier transforms are given, respectively, by

= fd xe (OIT{V . (x)V . (0))IO), (I)

= fd xe (0(TQ . (x)A . (0))i0), (2)

where i and j are the SU(2) indices (i,j = I, 2).
If SU(2) 8 SU(2) were an exact symmetry, we
would have 6»V(q) = 6 ~+(q) for all values
of q. However, in nature this symmetry seems
to be broken, but nevertheless one expects that
in the asymptotic limit q —~, SU(2) Iaw SU(2) would
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