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In this note we point out that there can be
a quite appreciable magnetic n-p mass differ-
ence if proper account is taken of the Roper
resonance' at 1400 MeV, with exactly the same
quantum numbers as the nucleon. We calculate
M„—Mp =2.4 MeV without the corrections for
Coulomb self -energy.

The calculation is based on the assumption
that (a) unsubtracted dispersion relations hold
for the nucleon proper self-energy part, sim-
ilar to those used by Barger and Kazes,
(b) the intermediate states with the hadrons
having I= ,' are domi-nated (in the sense of dis-
persion theory) by the Ny state, and (c) the
magnetic NNy proper vertex functions are dom-
inated by the Roper resonance. Assumption
(a) is closely connected to the hypothesis that
the nucleon is composite, as expressed by the
vanishing of the wave-function renormalization
constant Z, . Let us illustrate this by consid-
ering the electromagnetic mass differences
in a multiplet of scalar particles. The imag-
inary part of the electromagnetic proper self-
energy (keeping only intermediate states with
one scalar and one photon) is

lmll(s) = (o/4s)(s-M )r *(s)r"(~),
2

where D ' is the inverse propagator. Thus,
if Z, =0, we expect F, (s) to converge rapidly
(possibly like s ' or s 'lns) at infinite s, which
allows an unsubtr acted dispersion relation for
II(s) and makes the self-mass finite, even in
the presence of electromagnetism. A similar
investigation for the NNy vertex would be con-
siderably more complicated, since the vertex
with all particles off the mass shell has six
form factors, and several of these appear in
Ward' s identity.

For computing the n-p mass difference, we

use the spin--,' analog of Eq. (I). The electro-
magnetic self -energy contribution can be writ-
ten as

II (s) =A(s) +pB(s),

and the mass shift is just

5M =A (M ) +MB (M ).
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With unsubtracted dispersion relations for A.

and B,

, [ImA(s')+MimB(s')] (6)

and thus

lmll(s) = (n/2s)[(s+M')IF, I'

+ (s-M')ReF, E,*).

In lowest order of perturbation theory, E, = 1,
E, = 0, and the self- energy is quadratically
divergent. To all orders of the strong inter-
actions, F, presumably goes like s ' (since
it is an induced form factor). For F„we use
Ward's identity to conclude

(2)

(s M)F, (s) =D '(—s) = Z, (s —M'),

where a is the fine- structure constant, and
I' (s) is the proper scalar-scalar-photon ver-
tex with the photon (of momentum p-p~) and
one scalar (of momentum p') on the mass shell,
while the other scalar has mass p'=s. We
have

r (s) = (p+p') FI(&)+ (p —p') F2(&),

((P means principal part). The proper NNy ver-
tex functions which appear in Im A, B can be
expressed in terms of the matrix element
(Ol JN(0) I Ny), where J'N(0) is the nucleon cur-
rent. (Note that intermediate states like N»~y
contribute equ ally to the proton and neutron
self-energies, and hence cancel out in Mz—Mp. )

Very little is known experimentally about the
NNy vertex with one fermion off the mass shell.
But phase- shift analysis of m N scattering in
the P,~ channel indicates a resonance with IJ

at a mass of 1400 MeV, with a width
of 200 MeV, called the Roper resonance. Let
us assume that this dominates the Sachs m ag-
netic form factor FM(s):

m'-M ' -I r
)=v"n, p s-M '-fM r

R R R

Here p, is the total magnetic moment in units
of e/2M, and R refers to the Roper resonance.
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In the usual way, we find

Im A (s) +M Ima (s)
n, p n, p

= —(a/16Ms )(s-M ) IIi ' (s) I . (8)
2 23 np 2I

Of course, to Eq. (8) we should add the contri-
bution from electric form factors, which is
of the opposite sign. But we do not expect elec-
tric form factors to be dominated by the Roper
resonance, essentially because the RNy vertex
is purely magnetic when all the particles are
on the mass shell; the usual polology prescrip-
tion then says that the residue of the R pole
in the NNy vertex is just this on-mass-shell
RNy vertex. Alternatively, one may use Ward's
identity for the electric form factors to relate
these to the inverse propagator', we do not ex-
pect a Roper pole to dominate the nucleon prop-
er self-energy. When the nucleon is off the
mass shell, there are other form factors be-
sides the two Sachs form factors, but we will
ignore them for lack of better knowledge.

The rest of the calculation proceeds in a stan-
dard way. For the width I'R(s) in Eq. (7) we
use a simple expression reflecting the p-wave
nature of the resonance,

which make the n pm-ass difference truly com-
plicated. The reader should consult Barton
and Dare' for a discussion of these points.
In certain respects, the emphasis in our work
here is virtually orthogonal to the recent work
of other authorse who emphasize the Coulomb
self-energy and the possibility of reversing
its sign, and ignore the magnetic self-energy.
These authors ignored the magnetic energies
because the isoscalar anomalous magnetic mo-
ment pp+ p, n

—1 is very small. But the total
isoscalar moment pp+ yn is comparable with
the electric charge, and the isovector moment

pp —pn is rather large compared with 1. If
the Roper resonance further enhances the mag-
netic contribution, as this calculation shows,
then this must be considered an important part
of the n pm-ass difference. We are, in effect,
replacing our ignorance of the potentials, which
act to bind the composite nucleon, with our
knowledge of their effects —in this case, two
p-wave I= ,' bound s—tates separated by some
500 MeV.

We shall discuss these points in a lengthier
article, as well as give applications to other
electromagnetic mass differences.

We thank Professor I . A. P. Balhsz for val-
uable discussions.

I" (s) =PM (s-M')'s (9)

where P =8.4x10 ' for a, mass-shell width of
200 MeV. Using Eqs. (6)-(9), we find

=2.4 MeV.
n

(10)

The mass difference depends on the product
of the isoscalar and isovector magnetic moments,
i.e., on (pp+gn)(pp-pn). The value in Eq.
(10) is somewhat greater than the experimen-
tal value of 1.3 MeV. It is difficult to estimate
the corrections which must be applied for the
Coulomb energy and other terms neglected.
Coulomb energy will decrease this value, but
may be of the order 1 MeV or less, 4 which would
bring M„-Mp as calculated here to =1.4 MeV,
which is very close to the experimental value. '

We do not want to oversimplify the extreme-
ly difficult problem of electromagnetic mass
differences. There is not space here to discuss
all the possibly relevant factors (strange par-
ticles, baryon resonances, feedback, etc.)

*Work supported in part by the National Science Foun-
dation.

'tAlfred P. Sloan Foundation Fellow.
«For the original references, see A. H. Rosenfeld et

al. , Rev. Mod. Phys. 39, 1 (1967).
V. Barger and E. Kazes, Phys. Rev. 124, 279 (1961).
K. Nishijima, Phys. Rev. Letters 12, 39 (1964).

4We can estimate the Coulomb energy using the Sachs
electric form factor and the dispersion relations. How-
ever, with constant form, factor, Eq. (6) diverges
strongly. With a cutoff at 2M and constant electric
form factor, we get Coulomb energy =1 MeV.

5If instead of using dispersion relations in s, we use
dispersion relations in W=&s, we get a magnetic mass
difference of 1.9 MeV, which is slightly smaller than
2.4 MeV.

~Q. Barton and D. Dare, Phys. Rev. 150, 1220 (1966).
~R. F. Dashen and S. C. Frautschi, Phys. Rev. 135,

B1190 (1964).
H. R. Pagels, Phys. Rev. 144, 1261 (1966).

8H. M. Fried and T. N. Truong, Phys. Rev. Letters
16, 557 (1966).


