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since Bz can be neglected in comparison with
B„, and the other parameters in Eq. (1) are
not expected to change on going from the nor-
mal to the superconducting state. From the
data for the amplitude shift at 10 and 20 Mc/sec,
one obtains

I
=1.78 (i.e. , -5 dB), (3

s 10 Mc/sec

r
=3.55 (i.e. , -11 dB).

s 20 Mc/sec
(4)

where B is the damping constant, fm is the
maximum binding force between pinning points
and a dislocation, & =~pb' is the effective mass
of a dislocation per unit length, &0 = (v/L&)(C/A)U'
is the resonant frequency of a dislocation of
loop length I.e, and C is the line tension of
a dislocation. At 4.2'K, B~/Bs=18; one can
therefore write

Relations (3) and (4) can be solved for the two
unknowns ~, and B~, thus yielding a value for
B„which is independent of any ad hoc assump-
tions about the dislocation density, loop length,
or any other inaccurately known parameters.
One thus obtains &=8.6&&10 ' dyn sec cm
and mo = 2m&& 47.5 Mc/sec. This value of B agrees
with the result of a calculation by Holstein. '
An independent experimental study of ~~, (on
the same specimen) yielded a value in good
agreement with the one obtained above.
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We derive a simple expression for the diagonal coherent-state representation of quan-
tum operators, and discuss some of its applications.

a [v) =v(v),

( v) = exp(va t —v *a) ( 0),

(2)

(3)

and (vi is the Hermitian adjoint of )v). The
states Iv) are also called the coherent states.
The weight factor y(v) is in general not a well-
behaved function and can be interpreted only
in the sense of generalized function theory (see,
for example, Mehta and Sudarshan, 4 Klauder,

It was first observed by Sudarshan' that it
is possible to express the density operator p
of an arbitrary statistical state of a one-dimen-
sional harmonic oscillator in the "diagonal"
form'

p = Jy(v) iv)(v id'v.

Here (v) is the normalized eigenstate' of the
annihilation operator a with the (complex) ei-
genvalue v:

McKenna, and Currie, ' and Klauder'). However,
in most cases of practical interest it is possi-
ble to find a well-behaved function y(v) which
satisfies the relation (1). On the other hand,
Sudarshan's original explicit expression for
y is a formal series expansion involving deriv-
atives of Dirac's delta function and as such it
is hard to use; it is therefore desirable to give
some other explicit expression for y which
will yield a well-behaved function whenever
possible. In an earlier publication4 a relation
between the normally ordered and antinormal-
ly ordered characteristic functions was estab-
lished which can be used to evaluate y (see
Refs. 4 and 5). However, this method is again
not very simple. In this paper we wish to pre-
sent a simple explicit expression for y(v).

Let us multiply both sides of Eq. (1) by (-o. [

on the left and [ u)e~ o' ~ on the right, and also
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use the scalar-product relation'

We then obtain

(-nIpIn)e = fy(v)e e d v. (5)
I n I' —

I v I' v*n-v o.+ 2

Since v*a.-on* is a purely imaginary quantity,
Eq. (5) is simply a double-Fourier-transform
relation. On applying the Fourier-inversion
formula to Eq. (5), we obtain the following ex-
pressions for y(v):

y(v) =(I/~ )e
2 Iv t'

InI2 n~v-nv* 2xf(-n I p I n)e e d n. (6)

The Fourier inversion leading from Eq. (5)
to (6) is justified whenever (-n I p I n)e I n I is
square integrable. In such cases y(v)e- I" I

is also square integrable. However, in the gen-
eral case such a Fourier inversion can be in-
terpreted only in the sense of generalized func-
tion theory.

In deriving relation (6), we have not used any
specific property of the density operator and
hence the method can be employed for finding
a diagonal representation of any arbitrary op-
erator. We give below some examples to illus-
trate the usefulness of the relation (6):

Example 1. Diagonal representation of the
operator exp(-AaIa+ ~I+ va). —We can write

exp(-Xa a + pa + va)

=exp-A a -- a- —+ —. 7

Making use of the commutation relation between
the operators (a-p/A) and (aj-v/A), we can
derive the normally ordered expression' for
the operator on the right-hand side of (7), viz. ,

exp -~ a —— a-—

=:exp —1-e a -- a-—:,8-A. j' v p,

where: ~ ~ ~: denotes the normal ordering oper-
ation. From (8) we find

n exp -A. a -- a-— n

-A. v P, ~2= exp~(1-e ) n*+- n- —-2, n . (9)
A. A.

The operator Rata+ paj + &*a occurs in many
problems of physical interest as an interact-
ing Hamiltonian. The above expression [Eq.
(10)] can therefore be used to get the diagonal
representation of the density operator for such
an interacting system in thermal equilibrium.

Example 2. Diagonal representation of the
operator aj~a".—If we substitute / =at'nan
in Eq. (6), we obtain

Iv I' m n -InI2 n*v nv~ 2-
y(v) =—,e (-n~) n e e Q

One additional remark is in order. It can
be shown' that if we replace v and v* in the
expression for cp by a and aj, respectively,
and rearrange the factors such that all the pow-
ers of a occur to the left of all the powers of
aj, then we obtain the antinormally ordered
expression for (I/w)p. Written explicitly,

p=p =~ 0(a, a ) ') (12)

where "- ~ ~ "denotes the antinormal-ordering
operation. Relation (6) together with (12) can
therefore be used to evaluate the antinormally
ordered expression for the operator p. An an-
alogous relation holds for normal ordering. '

The phase-space distribution function for an-
tinormal ordered rule of association4 (I/m)(v I p Iv)

is related to the normally ordered expression
for p by the relation

p=p =v:p (a, a ):,)

where yg(a, aj) is the function obtained by re-
placing v and v* in (I/w)(v I p I v) by a and a j,
respectively, and: ~ ~ ~: denotes the normal
ordering operation.

In the preceding discussion we considered
only the one-dimensional harmonic oscillator.
However, the problem can obviously be gen-
eralized to systems having more than one de-
gree of freedom.

Using Eqs. (7) and (9) in (6), we then obta, in
the following expression for the diagonal rep-
resentation y(v) of the operator exp'-Rata+ pat
+ va);

y(v)= —exp A. + -(e -1) v+- — v- — . (10)=1 P, V V
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1=- exp( —(1—e )v*v) .

—A,a~a
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We have evaluated in closed form the scalar form factors in an irreducible representa-
tion of the noncompact group O(3, 1) containing antiparticles. In particular, we have cal-
culated the decay of baryon resonances into the ground state and compared it with experi-
ment.

In this note we report the calculation of the
decay rates of baryon resonances of arbitrary
spin into another baryon and a meson, and point
out a remarkable regularity of the partial de-
cay widths of baryons as a function of spin.

The basis of the calculation is the ordering
of the observed baryon resonances into unitary
irreducible representations of the dynamical
group O(3, 1), a group isomorphic to the homo-
geneous Lorentz group, extended by parity,
and containing antiparticles. The unitary ir-
reducible representations are characterized
by two numbers, a lowest spin jo that takes
integer or half-integer values and a continu-
ous imaginary number j,=iv. The state will
be labeled by i

J', Jz), where J=jo,j,+ 1,jo+ 2, ~ ~ ~ .
After the extension by parity, the requirement
of the existence of a four-vector current op-
erator I", which allows the particles to cou-
ple to the electromagnetic field, restricts the
physically interesting representations of the

group to the following types'.

Representation States Scalar, ps, vector,
~ ~ ~, vertex

~ 1&0=0 i)=2

ip=2, i(=0

~0 2 ~1 zv

no doubling of
states

no doubling of
states

doubling

S, V

S, V

S,P V, A

The first two representations have been con-
sidered in a previous paper in the calculation
of form factors and transition probabilities. '
The doubling of states in the third representa-
tion will be associated with antiparticles be-
cause I, for these states has the opposite sign
compared with the original states, just as in
Dirac theory, and clearly occurs only for fer-
mions. We denote the states of the two parts
of the Hilbert spaces of the doubled represen-
tation by I 1) and i 2), and the parity of the low-
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