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the absorption constant for combined resonance
is expected to increase with increasing field. '
The experimental results indicate, however,
that between 50 and 100 kG the combined res-
onance strength is only weakly dependent on
magnetic field. Preliminary measur ements
of the absorption strength as a function of the
angle between the applied field and the crystal-
line axes indicate that anisotropy is weak or
absent. A search was made for absorption at
the frequencies of the other two combined res-
onance transitions, but neither was found. From
the data, an upper bound on the absorption con-
stants of these transitions has been obtained
as follows: 2vc+ vs, 0.054 crn ', 2vc-vs, 0.38
cm '. (The latter transition requires popula-
tion of the 2 =0, spin-down level. )

Both the observed isotropy of the intensities
of the vs 2 and vc+ vs tra s t o s and the ab
sence in the spectra of the 2vc+ v~ and 2vc-v~
transitions, indicate that the nonparabolicity
of the bands, ' rather than the absence of inver-
sion symmetry, is responsible for most of the
combined resonance intensity. Combination
resonance should therefore be observable in
crystals possessing inversion symmetry and

having nonparabolic bands, such as PbTe, as
well as in other III-V semiconductors.
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ULTRASONIC ATTENUATION IN NORMAL AND SUPERCONDUCTING LEAD;
ELECTRONIC DAMPING OF DISLOCATIONS*

A. Hikata and C. Elbaum
Brown University, Providence, Rhode Island

(Received 27 March 1967)

In a recent publication' it was reported that
a maximum is found in the ultrasonic attenu-
ation, as a function of wave amplitude, in nor-
mal and superconducting lead at 4.2'K and the
normal state at 8'K. At a given temperature
the maximum occurs at higher amplitudes in
the normal state. These experiments mere
interpreted in terms of the difference in the

damping of dislocation motion due to conduc-
tion electrons in a metal. '

This I etter reports on some further exper-
iments and gives a more detailed analysis of
the results. Specifically, the shift in amplitude
at maximum ultrasonic attenuation in normal
and superconducting lead was used to determine

the parameter 8 associated with damping of
dislocations by conducting electrons in the nor-
mal state. The analysis does not involve any

ad hoc assumptions concerning inaccurately
known features of the dislocation network in
crystals, and the result is believed to be the
first of its kind.

The experimental conditions and techniques
used were described in Ref. 1. Figures 1 and

2 show, respectively, the results obtained at
frequencies ot 10 and 20 Mc/sec. The features
relevant to the present consideration are the
following: (a) At 10 Mc/sec the amplitude cor-
responding to maximum attenuation in the su-
perconducting state at 4.2'K is 5 da lower than
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the corresponding amplitude in the normal state
at both 4.2'K and at 11'K; (b) in the range 8'K
& T & 14'K the attenuation has the lowest value
observed at any temperature in the normal state;
and (c) at 20 Mc/sec the amplitudes correspond-
ing to maximum attenuation in the two states
at 4.2 K differ by 11 dB.

These results are interpreted as follows:
At low temperatures (T & 15'K) the major con-
tribution to dislocation damping comes from
intera. ctions with conduction electrons (at high-
er temperatures phonon damping is important
and eventually becomes the dominant contribu-
tion). In the normal state these interactions
are expected to be temperature independent,
because they are essentially independent of the
electron mean free path, while the atomic dis-
placements around a dislocation are also insen-

FIG. l. (a) Ultrasonic attenuation at 10 Mc/sec as a
function of temperature. H = 0 and H &II& indicate, re-
spectively, the values measured in the superconducting
state and in the normal state. (b) Attenuation as a func-
tion of the amplitude of the 10-Mc/sec ultrasonic wave
measured at 4.2'K superconducting state, 4.2'K normal
state, and at 11'K.

FIG. 2. Attenuation as a function of the amplitude of
the 20-Mc/sec ultrasonic wave measured at 4.2'K super-
conducting state and 4.2'K normal state.

sitive to temperature. ' This point is substan-
tiated experimentally by the observation that
the amplitude for maximum attenuation (at 10
Mc/sec) is shifted by the same amount from
the superconducting state at 4.2'K to the nor-
mal state at 4.2 and 11'K.

In the superconducting state the interaction
is expected to have a temperature dependence
given by the BCS ratio of normal to supercon-
ducting electrons, in analogy with the ratio
of ultrasonic attenuation, i.e. ,

where Bs(T) is the temperature-dependent dis-
location damping parameter in the supercon-
ducting state, Bz is the temperature-indepen-
dent damping parameter in the normal state,
and f(&(T)) is the Fermi function of the super-
conducting energy gap. As indicated in Ref.
1, the oscillatory stress required to break away
a dj.slocation from a pinning point is given by

/
m

4yL,
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n

I ' )A((u 2 —(u2)
S 0

(2)

since Bz can be neglected in comparison with
B„, and the other parameters in Eq. (1) are
not expected to change on going from the nor-
mal to the superconducting state. From the
data for the amplitude shift at 10 and 20 Mc/sec,
one obtains

I
=1.78 (i.e. , -5 dB), (3

s 10 Mc/sec

r
=3.55 (i.e. , -11 dB).

s 20 Mc/sec
(4)

where B is the damping constant, fm is the
maximum binding force between pinning points
and a dislocation, & =~pb' is the effective mass
of a dislocation per unit length, &0 = (v/L&)(C/A)U'
is the resonant frequency of a dislocation of
loop length I.e, and C is the line tension of
a dislocation. At 4.2'K, B~/Bs=18; one can
therefore write

Relations (3) and (4) can be solved for the two
unknowns ~, and B~, thus yielding a value for
B„which is independent of any ad hoc assump-
tions about the dislocation density, loop length,
or any other inaccurately known parameters.
One thus obtains &=8.6&&10 ' dyn sec cm
and mo = 2m&& 47.5 Mc/sec. This value of B agrees
with the result of a calculation by Holstein. '
An independent experimental study of ~~, (on
the same specimen) yielded a value in good
agreement with the one obtained above.
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We derive a simple expression for the diagonal coherent-state representation of quan-
tum operators, and discuss some of its applications.

a [v) =v(v),

( v) = exp(va t —v *a) ( 0),

(2)

(3)

and (vi is the Hermitian adjoint of )v). The
states Iv) are also called the coherent states.
The weight factor y(v) is in general not a well-
behaved function and can be interpreted only
in the sense of generalized function theory (see,
for example, Mehta and Sudarshan, 4 Klauder,

It was first observed by Sudarshan' that it
is possible to express the density operator p
of an arbitrary statistical state of a one-dimen-
sional harmonic oscillator in the "diagonal"
form'

p = Jy(v) iv)(v id'v.

Here (v) is the normalized eigenstate' of the
annihilation operator a with the (complex) ei-
genvalue v:

McKenna, and Currie, ' and Klauder'). However,
in most cases of practical interest it is possi-
ble to find a well-behaved function y(v) which
satisfies the relation (1). On the other hand,
Sudarshan's original explicit expression for
y is a formal series expansion involving deriv-
atives of Dirac's delta function and as such it
is hard to use; it is therefore desirable to give
some other explicit expression for y which
will yield a well-behaved function whenever
possible. In an earlier publication4 a relation
between the normally ordered and antinormal-
ly ordered characteristic functions was estab-
lished which can be used to evaluate y (see
Refs. 4 and 5). However, this method is again
not very simple. In this paper we wish to pre-
sent a simple explicit expression for y(v).

Let us multiply both sides of Eq. (1) by (-o. [

on the left and [ u)e~ o' ~ on the right, and also
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