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Some time back Fubini' derived a new meth-
od of obtaining sum rules of interest in strong-
interaction physics. In this note we apply Fu-
bini's method to electromagnetic and weak pro-
cesses. In particular we obtain sum rules for
radiative decays of mesons. Making contact
with strong interaction via Goldberger- Treiman-
type relations and p dominance, we also get
sum rules for strong decays of mesons.

(i) We begin by considering the matrix ele-
ments

M =ifd xe 8(x )(Ol[j (x) j (0)]ln, p)
VP, 0 v 'p5

which are related to the process 7T+-l++ v+y.
Here we have two independent four-momenta

p and k and one invariant v = -p k. Using the
commutation relation

M» is given by

M = i[H (v)P P +H (v)P k
vjJ. 1 v JLt. 2 v p,

+H (v)k P +H (v)k k +H (v)6 ].
4 v p, 5 vp.

We separate the Born term and write Eq. (1)
as

ik M (Born)+ik M =-f p,
v vp, V VQ 7T

where

M (Born) =-zf (2p-k) (p-k) /2v.
VQ 7T V

Hence from Eq. (2), we obtain

f +vH (v) =-f—,
7T 1 7T'

f —H (v)+vH (v) =0,
7T 5 2

(2)

l~(x0)[j0 (x),j
5

(0)]=-& (x)j
5

(x)'
p, 5 p, 5

and the current conservation, we get

ik M =-i(0lj lzz )=-f p
v vp. p5

First we note that at v = 0, we get H5(0) =f~.
From Eq. (3), we get H, (v) = 0 at v p 0 and the
sum rule

. fh (v')dv'=f, (4)

The most general form of the matrix elements where h, (v) is the coefficient of p k& to be picked
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out from

m =i(2~) P [6 (k-s)(0jlIs)(s jIIv )
4 . el . — +

VP. S V p5

4 . el +-& (P-k-s)(0lj Is)(s Ij I~ )].
p5 V

The sum rule (4) can also be obtained a,s fol-
lows: From Eq. (1), we get

H, (v) =vH, (v). (6)

If we write an unsubtracted dispersion relation
for H, (v),

f 1 "ImH (v')
2

H, (v) = —+-
V & ~ V —V

and assume that H, (v) - 0 as v -~, we imme-
diately get the sum rule (4). In view of Eq. (6),
the sum rule (4) can also be written as

—,h (v')dv'=f .1 "1
2vz„v' 5 'lt'

From Eq. (6), we see that only axial-vector
meson of negative G parity (A, ) can contribute
to sum rule (4) or (7). Hence we get

A, A, vy
m '-m

A,
(6)

where the coupling constants gA and fA ~ are
defined by

q (p+q),
~7T+ vp

We also note that the contribution of A, to h, (v)
is indeed 0.

(ii) We now consider the process w+-v'+&+
+ v+y. The matrix elements related to this
process are given by

M =iJd xe 9(x )
VP. 0

x(p, p'
I [j (x),j (0)]Ip, p).

V P,

Again using current conservation and the com-
mutation relation

we get

=-z(~'Ij Iv ) =(i/v2)F(t)(P+P') . (10)
V VILt,

Here the standard notation

P= .'(p-+p'), q =p'-p+k,

v=-P k, v = —,'k q, t=-(P-P')'

Therefore, from Eq. (11), we obtain

2W2E(t)-vA, (v, t) = 2&2F(t)

v2 E(t) vA-, (v, t) +-A„(v, t ) = 0.

We note that at v = 0, A„(0, t) =&2F(t). From
Eq. (12), we get A, (v, t) =0 at v p 0 and the sum
rule'

(i2)

. fa, (v', t)dv'=v 2E(t),

where a, (v, t) is the coefficient of Pvk& to be
picked out from

m (v, t)
VP,

=i(2~) g [6 '(P +k-s)(~ Ij Is)(sIj I~ )
4 . 4, O. el . — +

S V p,

4 '. 0. - . el +-6 (p-k-s)(w Ij Is)(s Ij Iv )].
V

(i4)

The sum rule (13) ca.n also be obtained as
follows: From Rq. (10), we get at vH =0

A„(v, t) = vA, (v, t).

If we write an unsubtracted dispersion relation
for A, (v, t) for fixed t,

is used. Since we are dealing with real photons,
k'= 0 and t = vg-q'. The matrix elements I

VP,
can be written in the most general form as

M =[A P P +A P k +A P q +A k P
vp. 1 v p. 2 v p. 3 v p, 4 v p.

+A q I' +A k k +A k q5vp. 6vp. 7vp,
+A q k +A q q +A 6 ].8vp, 9vp, 10vp,

We take v@ =0 so that t = -q' and A; are func-
tions of v and t only.

Separating the Born term, we write Eq. (10)
as

ik M (Born) +ik M =(2i/v 2)E(t)P,
V VJL], V VP,

where

M (Born) =-v2 [2E(t)P -F(t)k ][(2P-q) ]/2v.
VJL(, V
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and a,ssume that A,o(v, t) - 0 as v —~, we get
the sum rule (13). On the other hand the sum
rule (13) implies thatA„(v, t)-Q as v-~. In
view of the relation (15), we can write Eq. (13)
as

dv' = &2F(t)
2TTg ~ V

which at t = 0 gives

of these states to a, is indeed 0. The coupling
constants fA, f~, etc. are defined by

1

(~', q jliP, A, ')

=&[f & +f (ri q)(p+q) +f (n q)(p-q) ];
A~ p. 2 3

(& ', qij ' lp~)=(f, f )e q p n l
V wry' a vo. y o. y'

27T1 V
(i6)

This sum rule is closely related to the sum
rule very recently derived by Pagelss and Ha-
rari. This can be seen as follows'. We are
interested in evaluating the matrix elements
(s lj Iv ) to order e only; therefore, we can
use conserved vector current (CVC) for j
and regard s and & as eigenstates of I, so that
we get

(s jli~ ) =(s i[I,j ]in ) =v2(s lj lv ) (17)
JLL

as (s lI must be 0. We can write the optical
theorem'.

e'(e m (v, o)e ) =W22ie'(e In&1 (v, o)c )
V VP, P, V VP.

= v 2 2i2vo (v),tot

where we have used Eq. (17). But (evm»(v, 0)e&)
=aio(v). Hence in view of Eq. (14), we can write
the sum rule (16) as

=(f,f )e p (q-k) (q-k) A
Apy' A, vo. y y p pa'

where k =p-q.
The parameters of A, are least known exper-

imentally. But we can eliminate these param-
eters completely. ' Consider

M =i fd xe 0(x )(oi[j (x),j (0)]iA ) .
lL(, V 0 P5 'v

Using partially conserved axial-vector current
[& j 5 =-(f~/v2)m~'y ] and the commutation
relation

6(x )[j '(x), j (0)]=-64(x)j (x),

we get

f(0 l j-lA ) =~(vr ij IA ),

which gives gA = -(f~/v 2)fA . Using this re-
lation with our Eq. (8), we get

u =,f[o,(v')-o 4.(v')]dv'.1
2r' yv' ym' (is) f /(m '-m ') =v2.

1 1 y 1
(2o)

We prefer to use the sum rule in the form
given in Eq. (13) or (16). If we confine ourselves
to single-particle intermediate states, then on-
ly vector, axial-vector, and tensor mesons can
contribute to sum rule (13) or (16). Further-
more, because of C invariance, the above states
must be of negative G parity. Hence we get
from Eq. (13) or (16)

Hence we get from Eq. (19)

O=-,'f f (m '-m ')
(d 4t) TTy (d

+-,'f f (m '-m ')'/m
A2 A27Ty A2 7T A2

' (2i)

Now CVC gives f =~2f and fA =-&2f&
(d 4)&y y'

so that we get from Eq. (21), neglecting mz~/
m 'andm ~/mA ',2'

W2= — ' ' + 'f f (m '-m ')-
m 2-m 2 u ry 7r

A~ rr

(m '-m ')'
A,

2

A2

f 'm '=2f 'm 4,
(g)'tTy (d A2'tTy A2

which gives

I"(A —v + y) 3m
A,

I'((u -m'+ y) 5m

(22)

(23)

where we have neglected the contribution of
y meson. We also note that the contribution Experimentally only 1 (&u —wo+y) is known and
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'=4/(m '-m ')=4/m
(d 7T+ & 7T

(24)

which gives 1 (e —&+y) =0.96 in good agreement
with the experimental value. This may be re-
garded as accidental or else it may be that the
contribution of 0 and 1 mesons [which belong
to an SU(6) multiplet] and 1+ and 2+ mesons
separately saturate the sum rule (13) or (16).
If this is true then we get, in addition to Eq.
(24), the relation

f„2= 2/m
A, 7Ty A,

(25)

The above statement is certainly not true when
we consider the commutator of axial-vector
current with axial-vector current as we shall
show.

If we assume that the decay ~-7T+y or A,
-7T+y proceeds through the p meson, we get
f ~ =y g ~p/mp and fA ~ =ypgA ~p/mp ~

where ypyp~~/mp'-— 1. Hence from Eq. (22),
we get

its value4 is 1.2+ 0.3, whereas the value of
r(A, +-v++y) calculated from the decay rate
A, —p +7T and p dominance is 1+ 0.4 MeV.

+' +

Thus Eq. (23) seems to be satisfied very well.
The advantage of our approach is that relation
(23) is independent of the parameters of the A,
meson. From Eq. (20), we get the decay rate
r(A, -& +y) =2 MeV which seems to be quite
high. But our Eq. (23) should hold even if Eq.
(20) gives a, quite high value for the decay rate
r(A, '- ~'+&).

It may be noted that if we neglect the contri-
bution of A, and A, mesons, we get from Eq. (19)

Using Fubini's technique, we get the sum rule

1
f-a, (v', q', q", t)dv' = 4E(t), (28)

, [I, +(m '-m ')a ]'2m' 1 p
p

2 (m '-m ')4

+4G '+—x—,2g '=4, (30)f 7r

+ 2 3 m A,

where the weak-coupling constants h„h„etc.,
are related to the corresponding strong-coupling
constants y, etc., by Goldberger-Treiman-

p7T7T ~

type relations:

[Z +(m '-m ')h ]'=4f '1
p 7T 2 7T p7T7T

G '=f 'g '/2(m '-m ')'
+ 7T 07T 7T 0' 7T

g 2 —2f 2g 2/(m 2 m 2)2
A2 V fry f w

The coupling constants g and gf a,re defined

by

where a, is the coefficient of P&Pv to be picked
out from

m =i(2w)'p [6(p+q-s)(n+ Ij +
~s)

vp. s p5

x(s ij ~~')-6(p-q -s)
v5

x(v+)j )s)(s [j +(v+)]. (29)
v5 p, 5

As can be easily seen from Eq. (29), the only
possible single-particle states are p', o, and

f. Hence we get from Eq. (28), at q'=q" = 0
and t=0, the sum rule

m 2 ~=2m 2

~ ~~p'~' =
A, ~A, 'p'v'

whereas Eqs. (24) and (25) give

(26)

(~, qadi, lP, f)=g „(q-&) (q-&) A

4 2 2

(iii) Finally, we consider the matrix elements

M =ifd xe 0(x )
P, V 0

From Eq. (30), we get the sum rule' &'

1 2 2

— 'y 1J 07f 1T

2m '
w ~pew 2(m '-m ')'

p O' 7T

1 (m 2 m 2)2f 2g 2

x(,P'~[j ( ), j (0)]~,p)P5 ' v5

ow ~pv can be written

=APP + ~ ~ ~ .
P.V 1 P. V

First we note that, if we neglect the contribu-
tion of o and f mesons and use the relation'

yp~~ =mp/m~ which is well satisfied experi-
mentally, p gives just half the contribution to
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the sum rule (28). Neglecting the term m~'/
mf', we get from Eq. (31)

g 'm'
0"JT7T p

(m '-m ')' '
p fry ypwm

0' 7T

(32)

Now y zz/4w = 2.5 and gfzz'/4z =0.02/mz' (cal-
culated from If= 0.72m~ and mf2 ——80.0m~')
and we see that the contribution of o is essen-
tial to satisfy the sum rule (32), although the
experimental evidence for 0 is doubtful.

It may be seen that we have derived the sum
rule (16) under the assumptions of conserva-
tion of electromagnetic current, CVC, unsub-
tracted dispersion relations, and the commuta-
tion relation (9). In our approach and that of
Harari and Pagels, all other assumptions are
common, except CVC and the last assumption.
CVC is well established experimentally, there-
fore as far as the derivation of sum rule (16)

is concerned, the current algebra, the quark
model, and Regge-pole theory lead to the same
result.
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Assuming that the Regge trajectories ego(0) A~0*(0) and n27(0) are less than 0, we
derive sum rules for photoproduction. Comparison with the experiment is given.

De Alfaro et al. ' have recently derived a class
of "superconvergent" sum rules for strong-
interaction scattering amplitudes on the basis
of analyticity and reasonable arguments about
the high-energy behavior. The subject has at-
tracted considerable attention ever since. '
For the purpose of verifying the relations and
the assumptions involved, a number of authors~
have considered the case of meson-baryon scat-
tering and analyzed the one superconvergent
sum rule assuming the high-energy behavior
given by the Regge-pole model. It seems to
us of importance to verify these assumptions
in other processes as well. We have analyzed
the superconvergence relations for the process
of photoproduction of mesons from baryons.
In this case, we obtain more than one nontriv-
ial sum rule so. that the question of mutual
consistency can also be examined. In deriving
these sum rules the basic assumption made
is that the Regge trajectories n(t) have n»(0),
n»(0), and n»+(0) less than 0. If the sum rules
are valid, we may regard this as strong evi-

dence for the correctness of our assumption.
Let. k, q, p„and p, be the four-momenta

of the photon, the meson, the initial baryon,
and the final baryon, respectively. We decom-
pose the T matrix in terms of the four invari-
ant amplitudes, A, B, C, and D.4 They are
functions of the invariants

(p, +p.) & (p, +p.).v
2M 2M

and t=-(p-p')', where I is the baryon mass.
In the Regge-pole model, the invariant ampli-
tudes A, , D all behave like vn(t) 1 as v

-~, where n(t) refers to the dominant Regge
trajectory in the t channel, y+7T -N+¹ Since,
there is no experimental evidence for the ex-
istence of any low-lying mesons with I= —,

' or
2, we may assume that~

n„(0), n»~(0), n„(0)& 0.

We are thus led to consider the following five
nontrivial (i.e., those which are not trivially
satisfied due to the crossing properties of A,
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