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THEORY OF FIRST SOUND IN DILUTE SOLUTIONS OF He' IN He
AT VERY LOW TEMPERATURES*

Gordon Haymow
Department of Physics, University of Illinois, Urbana, Illinois

(Received 28 November 1966)

The velocity and attenuation of first sound in dilute solutions of He3 in very low temper-
ature He4 are calculated. The theoretical attenuation agrees well with that measured re-
cently by Abraham, Eckstein, Ketterson, and Vignos.

Introduction of He atoms into superfluid He
modifies the first-sound velocity and, by pro-
viding additional degrees of freedom for ener-
gy absorption, increases the attenuation of first
sound. At very low temperatures the attenua-
tion is due entirely to the viscosity of the He'
and can, as this paper will show, be calculat-
ed precisely. This is because, on the one hand,
the exact matrix element for the coupling of
a long wavelength phonon to a Hes quasiparti-
cle can be deduced from a combination of ther-
modynamic and Galilean invariance arguments,
and on the other hand, the He'-He' scattering
time 7 for viscosity can be calculated from
the effective He~-He interaction v(k), deter-
mined by Bardeen, Baym, and Pines. Mea-
surement of the attenuation of first sound at
very low temperatures thus provides a direct
measure of 7&,

' the attenuation calculated here
agrees well with the recent measurements of
Abraham, Eckstein, Ketterson, and Vignos. '

At very low temperatures attenuation due to
phonon-phonon scattering rapidly approaches
zero. Also, since the Fermi velocity of the
He3 is always much smaller than the first-sound
velocity, damping of sound by single-particle
excitations from the Fermi sea is forbidden
by energy conservation. Furthermore, atten-

uation of sound via "Compton scattering" of
phonons with He' atoms is exceedingly slow.
The collision time v~ for this process is giv-
en roughly by &@wc -10~ /&usx, where x is the
concentration of He'. In the ultrasonic region
~~~ is many orders of magnitude greater than
one. The primary mechanism, then, for ab-
sorption of sound is through the Hes longitudi-
nal viscosity g, that is, through the collisions
of the Hee, which are carried along in a first-
sound wave, with themselves. The collision
time 7. for this process, calculated &' from"I
the effective interaction v(k) between Hes atoms, '
1s

=(17.8&10 "/T') sec ('K),
n

in a solution of concentration x =0.05 at low
temper atur e.

The shift in velocity and the attenuation of
first sound in mixtures can be calculated by
using conservation laws combined with the He'
kinetic equation. At very low temperatures
(&0.2 K) thermal excitations of the He~ may,
to a first approximation, be neglected. The
collective excitations of the mixture are then
described by the variables p4(rt), the local He
particle density, vs (r t), the local super fluid
velocity, and n-(rt), the He' quasiparticle dis-
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tribution function. The He3 quasiparticles be-
have as normal fluid; if we let m be the He~

effective mass evaluated at zero concentration,
then each He' atom carries with it a mass 6m
=m —ms of He~ in its screening cloud. [m, is
the He atomic mass; from Ref. 1, m =2.34mB. ]
Thus the superfluid mass density is m~p~(rt)
—5mps(rt), where p~ is the local He particle,
or equivalently, quasiparticle density. Since
He quasiparticles are conserved, the super-
fluid mass density obeys the (linearized) con-
servation law

(8/Bt)(m p -5mp )+m n V v =0;
4 s s

mentum p in the frame where vs = 0 has ener-
gy given by (3); in the lab frame its energy
is given, to first order in vs, by E'p+p vs,
while its momentum is p+mgvs. Thus, in the
presence of a superfluid velocity,

E (v ) =E +(5m/m)p v
p s p s

[Fermi liquid corrections do not appear in the
m in this equation. ]

The linear response, 6p, = p, -n„of the He'
to He motion of frequency co and wave number
k can then be written as

5p =(p p )[(ep /an ) 5p +&u5mv /k],
n4 s

(4)

(5)

m4ns =m4n4-Gmn3 is the equilibrium super-
fluid mass density, and n4 and n, are the equi-
librium He and Hes particle densities. Fur-
thermore, the superfluid velocity obeys the
equation of motion

m av /at = -V p, (p, p )

(s p4/-sn4) vp4 (8 p4-/&n3) vp3, (2)
ns 4 4 3 n4

where p,4 is the local He chemical potential;
external driving forces on the He are added
onto the right side of this equation.

To describe the propagation of first sound,
we must then determine how the He density
is driven by superfluid velocity and He' densi-
ty fluctuations. The energy of a He' quasipar-
ticle, when vs = 0, may be written in the form

e =e (p, p )+p'/2m-g, 'v(p-p')n, .
p 0 3' 4 p' p'

eo is the effective local field felt by the quasi-
particles; to order xo in equilibrium &7 (&@0/
Bn4)n =(m4s /n4)(1+ n) =(8p4/8 3)nannd (BE0/
Sn3)n =(m4s'/n4)(1+2+), where s is the first-
sound velocity (-238 m/sec) of pure He4 and

n =0.28 is the fractional excess molar volume
of dilute He~ in He~. The last term in (3) is
the exchange energy; v(p-p') is the effective
interaction between He' quasiparticles, ' and
the sum over p' is restricted to particles whose
spin is parallel to the particle whose energy
we are considering. All Fermi liquid effects
are accounted for in eo and this exchange term.

The dependence of e- on the local He densi-p
ty is through co, the dependence of m on the
local He density leads to corrections -vF /s2
-0.01, where vF is the He' Fermi velocity.
To determine the dependence of ep on vs we
assume that vs g0; then a quasiparticle of mo-

where 5p, = p, -n, and (p,p, )(k, ~) is the Fourier
transform of the retarded He' density-density
correlation function. To calculate this function
we solve the He Boltzmann equation, includ-
ing Hes-He' collisions by writing a relaxation-
time approximation that conserves quasipar-
ticle number and momentum. In the limit co

» kvF the result is

kn,
3 7J

He' compressibility terms in the denominator,
of relative order (kvF/&u)', have been omitted,
as have Fermi liquid effects beyond I",. The
He~ longitudinal viscosity g is given in terms
of the He relaxation time 7 by g= —,m*vF
&&n3T Y(T), where m* is the Hes effective mass

Tl
at concentration x. The monotonically increas-
ing function Y(T) is given at low T by

Y(T) =1+(32m /35)(T/T ) 2-(15'~ /128)( T/T )4,
F F

and generally by

Y(T) =1+-.'(~ /I -1)+(3/u ) 1, S,dT,

where PT and SZ are the pressure and entropy
density of a free Fermi gas of effective mass
m* and density n, at temperature T.

Fourier transforming Eqs. (1) and (2), using
(1) to eliminate vs and substituting Eq. (5) in-
to (2), we find that the dispersion relation for
first sound in the mixture is given by the solu-
tion of the equation

m (u'=n k'1(ap /Bn )
4 s 4 4n3

+(p p )[(ap, /&n ) +5m(u'/n k']'). (7)3n4 s
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= 1-0.23x. (s)

The first term in the square brackets is an
increase in the sound velocity due to the inter-
action of the He with the He", the next two terms,
which are both negative, represent a decrease
in the sound velocity due to the lowering of the
He density, and hence partial compressibil-
ity, caused by the addition of He'.

The amplitude attenuation n~ of first sound,
determined by the imaginary part of the solu-
tion to (7), is given by

In writing (7) we have neglected a correction
to the final term of relative order x. The term
(ap4/an4)~ depends onx. The quantity in square."3
brackets is the effective matrix element for
the coupling of a He3 quasiparticle to a long
wavelength He phonon. This matrix element
is determined exactly by thermodynamic and
Galilean invariance arguments; in the limit
x —0 and for m =sk it becomes

(m~s'/n4)(1+ n+ 5m/m4) = 2.28m4sa/n4.

From (7) we find that the first-sound veloc-
ity sx in the mixture is given by

s /s =1+-,'x[(m /m)(I+ n+ 5m/m )'

-(1+n+5m/m )+n an/an ]

IO— 40 Mc/sec.

00 Mc/sec.

increase with temperature. [In fact, 7 &T ap-
proaches the theoretical value 74&10 '2 sec
('K)a in the nondegenerate regime. ] Further-
more, attenuation via phonon-phonon scatter-
ing begins to play a role above about 0.15'K.

Below the 20-Mc/sec curve we have plotted,
as a dash-dot line, formula (10) at 20 Mc/sec
replacing 1'(T) by 1, its T = 0 value; the max-
imum is decreased and shifted to T =0.047'K.
This is the expected form of the attenuation
at lower frequencies and temperatures.

The 60-Mc/sec data fall about 0.6 cm ' be-
low the theoretical curve. The dashed line through
these data is the 60-Mc/sec theoretical line
reduced by 20%. The temperature dependence
of the data agrees very well with the theory;
as in the 20-Mc data, one sees that ~&T' begins
to increase above 0.1'K. The comparison be-
tween theory and experiment at 100 and 140
Mc/sec is similar to that at 60 Mc/sec. Note
how at these higher frequencies ny begins, as

l I ) I

x v 2(d 7

, ( +In+ 5m/ m)'Y(T'), ",. (9)I 15 s3 m~ 4 1+4) 7
n

The concentration and frequency dependence
of this result is similar to that derived by Eck-
stein'c by similar methods. For a 5/o solution,

O
I-

z I.O—
UJ

0
0

60 Mc/sec.

n =(O.57x10-')Y(T)2~'T /(I+~'~ '),
I (10)

Cl

Mc/sec.

in cgs units. Since 7& has been calculated, all
the parameters in the formula for o.~ are known.

The low-temperature attenuation for a 5%
solution at frequencies of 20, 60, 100, and 140
Mc/sec is shown in Fig. 1. The data points
[squares at 20 Mc/sec, circles at 60 Mc/sec]
are those of Abraham et al. as given in the
figure of their paper. At 20 Mc/sec both the
theoretical and experimental maxima occur
at 0.052'K, while the maximum theoretical at-
tenuation is about 5% greater than the experi-
mental value. The theory agrees closely with
the experiment at 20 Mc/sec up to T-o.l'K.
The larger experimental values of n~ above
that temperature indicate that T&T' begins to

O. l

.OI .I

TEMPERATURE ( K)

FIG. 1. Calculated attenuation of first sound in a 5%
solution of Hes in He4. The solid lines are the calcu-
lated attenuation at 20, 60, 100, and 140 Mc/sec. The
dashed-dotted line at the bottom is the attenuation at
20 Mc/sec calculated with the factor Y(T) replaced by
1. The data points are those of Abraham et al.2; the
squares are their 20-Mc/sec data, while the circles
are their 60-Mc/sec data. . The line drawn through the
60-Mc/sec data is the theoretical attenuation reduced
by 20%.
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a, consequence of the factor Y'(T), to increase
faster than T' above 0.05 K; this feature is ob-
served experimentally. %hen the additional
attenuation due to phonon-phonon scattering
is added to that due to He3 viscosity, the fall-
off of the attenuation beyond 0.15'K becomes
less pronounced than in Fig. 1.

The discrepancies between the present the-
ory and the experiments are not crucial for
two rea, sons. First, in this calculation, terms
of relative order x have been neglected; thus
one expects Eq. (9) for a 5% solution to be ac-
curate at most to 5 or 10%. Second, the exper-
iments measured only attenuation differences
at each frequency. The absolute normalization
of the data, i.e., the zero of attenuation at each
frequency, was inferred indirectly and the un-
certainties in this procedure are a possible
source of discrepancy.
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Note how this result differs from the usual energy
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The shift in the first-sound velocity is in accord
with that calculated by Khalatnikov, Ref. 8, Eq. (24-73).
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One of us'& has recently proposed a new the-
ory of ultrasonic attenuation in the mixed state
of a pure type-II superconductor in a high mag-
netic field. The purpose of this Letter is to
present recent experimental results on longi-
tudinal and transverse wave propagation in two
pure single crystals of niobium and to compare
these results with the theoretical predictions.
The crystals were oriented in the [111]direc-

tion and in the [100]direction and had resistiv-
ity ratios of p300/p~, = 150 and =300, respec-
tively.

The theory is developed for circumstances
where the mean free path of the electron is
much larger than the coherence length, l/$0
»1, and where the upper critical field Hc2 IIc2
-80 (H, is the applied external magnetic field).
In the case where the wave vector ql is paral-
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