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of considerably lower energy, for still higher
Z, the spherical shape is not even a minimum.
It may be seen from Fig. 2 that the minimum
is always very shallow, and that the energy
maximum encountered in a transition to the
very elongated prolate shape is less than 1 MeV.
Such nuclei must be extremely susceptible to
spontaneous fission. '

In spite of the crudeness of the semiempir-
ical formula, we believe that our predictions
are fairly reliable. Deviations from that for-
mula occur chiefly at closed shells, and it is
generally agreed that around Z =100 we are
about in the middle of filling a shell. In this
case, the Nilsson levels of individual nucleons
are quite close together, forming almost a con-
tinuum, so that the liquid-drop model should
be a good approximation. Furthermore, col-
lective interactions have the tendency to make
the shape of nuclei prolate spheroids even in
regions of Z and & where the liquid-drop mod-
el predicts spheres. We therefore believe that
a liquid-drop prediction of spheroidal shape
should be taken seriously.

These results will be modified by shell struc-

ture. This has an important influence on the
energy only for the spherical shape. The next
magic nucleus after Pb' is expected to have
184 neutrons and, to keep the ratio of neutrons
to protons close to equilibrium, probably 114
protons (which is not really a good closed shell).

The energy reduction for this semimagic
nucleus is likely to be considerably less than
for Pb for which it is about 15 MeV. On the
other hand, without shell structure, the elon-
gated shape has an energy about 18 MeV less
than the sphere for Z =114. We therefore be-
lieve that shell effects are unlikely to make
the nucleus Z = 114 stable.
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This Letter reports an analysis of the fine
structure observed in a high-resolution study
of analog resonances in K4' using Ar40(P, P)Ar40. '
The analysis uses a K-matrix theory of fine
structure in nuclear reactions. ' The S matrix
is related to the E matrix by

S,= exp(i5 )[(I—i')(1+i') —'],exp(i5, ). (1)cc c cc c

The K matrix is derived from a she11-model
approach to reaction theory and has a resonant
part

(2)

where r& = 2m I (X& j V I c) j
' is the partial width

for decay of the state X~ through channel C.
The Ve is the shell-model effective interaction
a,nd X~ is obtained by diagonalizing H0+ Ue on
the set of discrete eigenstates of Ho. This H,

is an independent-particle Hamiltonian with
a Saxon-Woods potential, which is used to gen-
erate the nonresonant phase shifts appearing
in Eq. (1).

The resonance energies E~ and the widths
I"&c can be treated as parameters which are
determined by fitting the experimentally ob-
served resonances. This analysis has been
carried out on the Duke data. The spin, par-
ity, resonance energy, proton width, and al-
pha widths of every fine -structure resonance
in the range of Ep = 1.6432 MeV to Ep =2.6020
MeV have been. tabulated. ' From this tabula-
tion we have calculated the reduced widths y&2

=1 &/2kRP which are shown in Fig. 1.
The model chosen to describe this resonance

structure is the following. Strongly coupled
to the incident proton channel is what one calls
the analog state, which acts as a doorway state.
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FIG. l. The fine-structure widths as a function of energy. Dots represent experimental values of the widths of

hallway states, while dots with lines through them are widths of hallway states whose spin is uncertain. The solid
curve is the theoretical fit of Eq. (4) using the values of the parameters as stated.

%eakly coupled to the continuum are hallway
states, 4 which are seen far away from the ana-
log as very narrow resonances with widths of
the order of tens of electron volts. These hall-
way states are also coupled to the analog state,
and they acquire an additional width through
their coupling to the continuum via the analog.
The width of the analog is in this way distrib-
uted to the nearest hallway states, and the widths
about the analog resonance energy show an en-
hancement. This enhancement is at the expense
of the analog, of course, which actually "dis-
solves" among the hallways. Otherwise stat-
ed, the coupling between the hallway states
and the analog state results in a new set of
eigenmodes, each of which contains some por-
tion of the original analog state.

The hallway states are approximately iso-
spin T= —, states, while the analog corresponds
to T- 2. Since the average Coulomb interac-
tion requires spatially different radial wave
functions for neutrons and protons, the appro-
priate wave functions for describing both the
analog state and the hallway states are actual-
ly eigenfunctions of analog spin and not of iso-
spin. ' The coupling matrix elements between

the analog state and the hallway states will there-
fore contain both the "residual" Coulomb inter-
action and the charge-independent effective
nuclear interaction. In addition to the direct
coupling between the analog state and the hall-
way states it is important to consider the cou-
pling through the continuum as intermediate
states. Only a calculation can tell which cou-
pling is more important.

Under certain conditions the width distribu-
tion will show an asymmetry as first observed
by Robson who gave a formula, for the distri-
bution of widths about the analog. The quali-
tative explanation of this asymmetry is that
the "intrinsic" width of the hallway state and
the width gained by coupling to the analog state
contribute coherently when a certain phase re-
lation is satisfied and, therefore, interfere
constructively or destructively over the res-
onance region. The Ar" (p,p)Ar" fine-struc-
ture widths show this asymmetric pattern in
Fig. 1.

The qualitative statements made above can
be derived rigorously. For simplicity we con-
sider only one open channel, a good approxi-
mation in the Ar4'(p, p)Ar" data. For the dis-
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tribution of widths in the model considered
above, we have

I' -=2~1(X I V Ic)P
A.

V 2 (E —E )'
I 1~2 1. »2

a E E —(E E—)2+ I' /4'
A. a A g s

where

r -=I [I+D //2[V P]i'.
s zn ha

Here D is the average level spacing of the fine
structure, F.~ the energies of the fine-struc-
ture resonances, VI,a= (yl, I Ve Iya) the aver-
age coupling matrix element of the hallway state
lych) to the analog state [ ya), 1l 'i' the aver-
age amplitude for decay of a hallway state be-
fore coupling to the analog, I'~"' the analog-
state amplitude for decay, and 1;„=2~ I Vha I'/D. '

Near the analog energy E~ the distribution
of widths follows a Lorentzian with a "spread-
ing width" I s. This width is determined by
the coupling matrix elements VI,~ between the
analog state and the hallway states. An asym-
metry appears in the distribution of widths when
the matrix elements Vp~ and I'I,"' have the
same relative phase across the whole region
of enhanced fine structure. ' When this situa-
tion obtains, it is useful to write Eq. (3) in a
different form,

(E -E -~)'
a

~h (E E)'+ I' '/-4'
a s

b. —:[V /(I' 1" )"']I"
Aa A, a a'

(4)

The enhancement factor which multiplies the
intrinsic width I I, has a width of I s and pre-
dicts a suppression of fine structure at an en-
ergy displaced from E~ by a multiple of the
analog width I'~. This function has the gener-
al form of that given by Hobson, ' but the param-
eters are quite different. The width of Hobson's
enhancement function is Iz, which is general-
ly expected to be considerably smaller than I"s.

In applying Eq. (4) to the analysis of the widths
of fine structure in analog resonances we first
remark that I p, and. I ~ increase with energy
due to penetrability and phase-space factors.
These factors are the same in these two widths,
however, and therefore 6 is a constant. Since
I s is also a constant, the enhancement factor

multiplying I'I, contains only energy-indepen-
dent constants. Thus the fine-structure reduced
widths y~' are determined by four energy-in-
dependent constants: the reduced width y&',
~, rs, and Ez. The value of yI,

' can be read
from the distribution as the asymptotic (aver-
age) value of y&' far from Ea T.he energy Ea
is the position of the maximum ym~' of the
reduced width distribution, if yI, «ymax'.
The quantity 6 =Es-Fz is found by reading
the suppression energy Es at which the reduced
widths go to zero. I s is approximately the
width of the y& distribution at half-maximum.
A simple relation which must be satisfied by
these parameters is that (I's/26)'=yI, '/ym~'.
This relation can also be used to determine yh'.

Once the four parameters yI, ', 6, I's, and

E~ have been determined by fitting the y~' dis-
tribution, the analog width Iz and the coupling
matrix element V~ are easily found. A fourth
parameter now enters, however, the level spac-
ing D. This is determined by counting the num-
ber of resonances in a suitable energy inter-
val. Vp~ is then found from the definition of I s.
The analog width follows from the definitions
of a and I's, which give I'a = (2m''/D)(I'I, /I' s).

The value of I'~ can also be obtained from
a sum rule satisf ied by the I ~, or rather by
the ener gy-independent yy', '

(5)

The left-hand side approaches zero away from
E and, therefore, the contributions to y

'
come from resonances near the analog ener-
gy. The analog width can therefore also be
found directly from the y~' distribution. If
we replace the sums by integrals and use the
smooth distribution of Eq. (4), we find exact-
ly the equation given for I in the preceding
paragraph. Therefore, the distribution of Eq.
(4) automatically satisfies the sum rule.

Note that although there appears a certain
arbitrariness throughout this paper in the con-
version factor relating widths and reduced
widths, the absolute value of this factor does
not affect the results of the analysis of the ex-
perimental widths I'~ in any way. Only the
energy dependence enters, and this affects
only the quality of the fits to the data far from
Eg. Thus, penetration factors for a Saxon well
should be used in defining the reduced widths,
but we have used those for a square well as
a convenient approximation.
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The fits to the fine structure associated with
analog resonances at Ep = 1.87 Me V and Ep
= 2.45 MeV in Ar"(p, p)Ar'0 are shown in Fig. 1.
These are the analogs of the fourth and sixth
excited states of Ar" at excitation energies
of 1.35 and 1.87 MeV. The data were fitted
with VI = 5.8 keV, D= 10 keV, I g

= 12 eV, and
I" = 5.5 keV for the J=

& resonances neara
] +E = 1.87 MeV. The 8=-,' fine-structure width

distribution was fitted with V~~ = 7.6 keV, D
=12 keV, I'g=23 eV, and I~=5 keV.

The width I'~ of the analog state can be re-
lated to the single-particle width I"p P of a
proton scattering resonance at Ep=E~ The.

relation is9

in Ar4o(p, p)Ar40 as an s-wave proton resonance,
is most simply interpreted as a 2sl/2 neutron
coupled to a J=0 excited configuration of Ar
formed by exciting two neutrons from the 2s„,
shell to the lf7, 2 shells. The analog of this
state can be excited by a proton incident on
Ar" only if the ground state of Ar ' also con-
tains P'= 10 /o of this excited configuration.
The presence of this configuration as core "ex-
citation" of Ar' in this amount appears to be
reasonable. "

The authors are grateful to L. Rodberg and
G. Stephenson for many useful conversations.

I' =(2T+ I) P I'

where P is the fraction of the Ar~ ground state
which is the parent of the state in Ar4' corre-
sponding to the analog resonance in K4'. Since
I' is determined from the sum rule of Eq. (5),
a calculation of I'psP will lead to a value for
the parentage coefficient p. This coefficient
is also determined by stripping data' from
Ar4o(d, P)Ar4', although the ratios of such co-
efficients are more reliably obtained from strip-
ping data than the absolute values.

Calculation of IpsP from an optical potential
of the Saxon-Woods form adjusted in depth to
give a —,

' resonance at Ep = 1.87 MeV and a
resonance at Ep = 2.45 MeV gives 80 and

300 keV, respectively, for these two resonanc-
es." Since these are T= —,

' states and the sum-
rule value of I ~ for each is about 5 keV, we
find P'= 1.0 for the 1.87-MeV level and P'=O. l
for the 2.45-MeV level. The ratio of the re-
duced stripping widths to the corresponding
two levels in Ar ' is 10„ in agreement with this
result. "

Both values of P' are consistent with simple
shell-model interpretations of these two lev-
els in Ar '. The J= —,

' state is suggested to
be a 2p„, neutron coupled to the J= 0 ground
state of Ar". The J=2 state, which is seen
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