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SHAPE OF HEAVY NUCLEI*

Philip J. Siemenst and H. A. Bethe
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York
(Received 10 March 1967)

This Letter reports some estimates of the
binding energies of systems of very many nu-
cleons in several geometric configurations by
means of the Bethe-Weiszicker semiempiri-
cal mass formula. The configurations inves-
tigated were a spherical shell, and oblate and
prolate spheroids. It was found that, for beta-
stable nuclei with more than 104 protons, the
most energetically favorable configuration is
a prolate spheroid.

The semiempirical mass formula' gives the
total energy of a spherical nucleus of A nucle-
ons, with Z protons and N=A-Z neutrons, as

E=—f(A,2)A +f,(A,Z)A?*+C(4,Z). (1)

Here C(A,Z) is the Coulomb energy, well rep-
resented by 2(Ze)?/r, AY3. f, is supposed to
represent the binding energy per nucleon in
infinite nuclear matter; f, is the energy nec-
essary to form a surface and expresses chief-
ly the reduced binding of nucleons near the
surface. f; andf, are taken to depend on the
square of the neutron excess D=N-Z; they
are commonly expanded in powers of (D/A).
Considerable progress has been made in cal-
culating f, and f, from the theory of nuclear
matter. However, the best knowledge of these
functions is from fits to experimental data on
the binding energy of nuclei. Green,? writing
fi=a,=a,D/A)? and f,=a,-a4(D/A)?, finds a,
=15.88, a,=17.97, 0,=31.5, a;=40.0, and 7,
=1.216 (all energies in MeV, distances in 10~!3
cm). Nemeth® has been able to calculate the
symmetry energy from nuclear matter theory;
she finds values for f, which agree well with
the empirical coefficients given by Green and
shows that the semiempirical formula should
continue to be valid up to quite large asymmet-
ries.

The expression (1) for the nuclear binding
energy is adapted to nonspherical geometry
by supposing that the term f,4%® is simply pro-
portional to the area of the nuclear surface.
Thus the surface energy becomes sz"” 3gs, where
&5 is the ratio of the surface area of the con-
figuration investigated to that of a sphere of
equal volume. The Coulomb energy may, of
course, be calculated from Poisson’s equation;
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the result can again be written as g42[(Ze)?/r ]
X A7'3 where g, is the ratio of the Coulomb
energy to that of a sphere of equal volume.

The beta-stability condition 8E/8N=8E /8Z
gives for the beta-stable value of Z

“=Te/A AsgAl/a_a;gl 7rg) @
( )(0‘4 ‘a5g5 +3(e ch4

For the geometries investigated here, g, and
g5 are functions of a single deformation param-
eter x, so that the most stable configuration

is characterized by 8E/dx =0.

The shapes investigated here include a pro-
late spheroid, an oblate spheroid, and a spher-
ical shell of uniform density from radius R-3¢
to R+ 3t, and zero density elsewhere. The de-
formation parameter x for the spheroids is
taken as the distance between the foci of the
rotated ellipse divided by its major axis. For
the spherical shell, x is the ratio 3t/R of the
thickness to twice the arithmetic mean radius.
Assuming a uniform density of charge, it is
straightforward to calculate g, and g;. They
are, for a prolate spheroid,

1 2173 1, L+X
84=5 (1=2*)"In;—, (3a)
PR (1 4 (L=x?)= 12 Lc;lg,x> (3b)
For an oblate spheroid,
g4=%(1—-x2)”° arcsinx, (4a)
2 1 14+x
— L(1_42)2/3 =1 .
o= H(1-x?) (1_x2+x nl_x> (4b)
For a spherical shell,
2 \Y3 (1—5x + 5%+ x%)
2/ 2\ (1+x?%)
£=3(38) Tt (5b)

The total energies of the stable configurations
for a given nucleon number A are plotted in
Fig. 1 as A ranges from 300 to 1500. These
are both beta stable and deformation stable,
except that the total energy of a sphere, giv-
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FIG. 1. Energies of nuclei with various configura-
tions. For the spheroids and spherical shell, energies
are for stable configuration.

en by Eq. (1), is shown for comparison. All
these are plotted with Green’s values for f,,
Sz, and v.. If 7, is reduced to 1.1 fm, all the
curves are moved upwards somewhat, the ob-
late spheroid and the spherical shell moving
somewhat more than the prolate spheroid, which
moves only about 100 MeV. (The smaller val-
ue of 7, would probably be more appropriate
for the shell, since 7, as found by Green in-
cludes an effect of lower proton density at the
center of the nucleus.) Beta stability for the
sphere, shell, and oblate spheroid are fairly
similar, with Z/A ranging from 0.4 to 0.3 as
A goes from 200 to 1000.

The most interesting case is evidently the
prolate spheroid. It accepts additional nucle-
ons much more readily than the other config-
urations. Its beta-stability curve is quite flat,
with Z /A remaining at about 0.38 for A past
1500 nucleons. The prolate spheroid contin-
ues to bind the last nucleon by about 5 MeV
even past A=3000. Its minor axis (diameter)
remains quite constant, being 8 fm for A =400
and diminshing to 6 fm for A=1500; it scarce-
ly diminishes further by A =3000.

More importantly, however, the prolate de-
formation begins to show an energetic advan-
tage over a sphere when Z is greater than 104.
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FIG. 2. Energies of spheroids with fixed A and Z as
a function of deformation. w =(axis of rotation)/(rotat-
ed axis).

(The atomic number at which deformation is
favored is approximately proportional to the
choice of 7,.) Figure 2 shows the total ener-
gy of A nucleons including Z protons, for sev-
eral values of Z and A, as a function of w, the
ratio of the axis of rotation to the rotated ax-
is of the ellipse generating the spheroid. The
values of Z chosen are those given by the beta-
stability condition for the sphere, Eq. (2) with
£4=8s=1. We have also done calculations as-
suming 15 or 45 more neutrons for a given
atomic number. The shape of the energy curves
is almost entirely insensitive to the number
of neutrons, depending chiefly on Z. Adding
15 neutrons makes the spherical shell slight-
ly more favorable, with changes of the order
of 0.1 MeV; adding 45 neutrons actually favors
the prolate shape by about 0.5 MeV more than
at beta stability.

The shape of the energy curve as a function
of deformation was noted by Weiszicker in 1939.*
If a nucleus has more than some critical num-
ber of protons (found here to be 104), the spher-
ical shape is only a shallow local minimum
of energy, with a very elongated “stable” shape
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of considerably lower energy; for still higher
Z, the spherical shape is not even a minimum.
It may be seen from Fig. 2 that the minimum
is always very shallow, and that the energy
maximum encountered in a transition to the
very elongated prolate shape is less than 1 MeV.
Such nuclei must be extremely susceptible to
spontaneous fission.®

In spite of the crudeness of the semiempir-
ical formula, we believe that our predictions
are fairly reliable. Deviations from that for-
mula occur chiefly at closed shells, and it is
generally agreed that around Z =100 we are
about in the middle of filling a shell. In this
case, the Nilsson levels of individual nucleons
are quite close together, forming almost a con-
tinuum, so that the liquid-drop model should
be a good approximation. Furthermore, col-
lective interactions have the tendency to make
the shape of nuclei prolate spheroids even in
regions of Z and A where the liquid-drop mod-
el predicts spheres. We therefore believe that
a liquid-drop prediction of spheroidal shape
should be taken seriously.

These results will be modified by shell struc-

ture. This has an important influence on the
energy only for the spherical shape. The next
magic nucleus after Pb®® is expected to have
184 neutrons and, to keep the ratio of neutrons
to protons close to equilibrium, probably 114
protons (which is not really a good closed shell).

The energy reduction for this semimagic
nucleus is likely to be considerably less than
for Pb®®® for which it is about 15 MeV. On the
other hand, without shell structure, the elon-
gated shape has an energy about 18 MeV less
than the sphere for Z =114, We therefore be-
lieve that shell effects are unlikely to make
the nucleus Z =114 stable.

*Work supported in part by the U. S. Office of Naval
Research.
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FINE-STRUCTURE ANALYSIS OF ANALOG RESONANCES IN K*' f

A. Mekjian and W. MacDonald
University of Maryland, College Park, Maryland
(Received 28 December 1966; revised manuscript received 9 January 1967)

This Letter reports an analysis of the fine
structure observed in a high-resolution study
of analog resonances in K*! using Ar?(p,p)Ar®.!
The analysis uses a K-matrix theory of fine
structure in nuclear reactions.? The S matrix
is related to the K matrix by

- . s . 1 5
S, exp(zéc)[(l inK)(1+ inK) ]Cc,exp(z c’)' (1)
The K matrix is derived from a shell-model

approach to reaction theory and has a resonant
part

(M

1
K C,R:(271)_1E r. °r

c X Ae T ac’ /(E_E,\)’ (2)

where T, =27 (X, |V, [c)|? is the partial width
for decay of the state X, through channel c.
The V, is the shell-model effective interaction
and X, is obtained by diagonalizing Hp+ V, on
the set of discrete eigenstates of H,. This H,
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is an independent-particle Hamiltonian with

a Saxon-Woods potential, which is used to gen-
erate the nonresonant phase shifts appearing
in Eq. (1).

The resonance energies E) and the widths
T’y o can be treated as parameters which are
determined by fitting the experimentally ob-
served resonances. This analysis has been
carried out on the Duke data. The spin, par-
ity, resonance energy, proton width, and al-
pha widths of every fine-structure resonance
in the range of Ep =1.6432 MeV to E, =2.6020
MeV have been tabulated.® From this tabula-
tion we have calculated the reduced widths y,?
=T, /2kRP which are shown in Fig. 1.

The model chosen to describe this resonance
structure is the following. Strongly coupled
to the incident proton channel is what one calls
the analog state, which acts as a doorway state.



