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a slight qualitative difference in the nature
of the collision-broadening process between
the stimulated- and spontaneous-emission ex-
periments. This difference may become ex-
aggerated above the transition region. The
existence of comparably large exchange cross
sections for resonant collisions between iden-
tical atoms suggests that the real case in the
oscillating laser falls between the two limits
of statistical independence and statistical cor-
relation considered by Rautian and Sobel'man. '
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The entropy of two-dimensional ice has been found by the transfer-matrix method.

Entropy=Mk 1nW, with i=No. of molecules and 8'=(3)

At low temperatures ice has a residual en-
tropy caused, presumably, by an indetermina-

cy of the crystal structure. The oxygen atoms
constitute a periodic crystal lattice that is hy-
drogen bonded. The hydrogen atoms are not
at the centers of the bonds, however, so that
there are two possible states for each bond

corresponding to the two positions of the hydro-
gen atom relative to the bond midpoint. Nev-
ertheless, not all bond configurations are al-

lowed, for there is a constraint called the "ice
condition" such that for the four bonds emanat-
ing from each oxygen atom, exactly'two of the
bonds must have the hydrogen atoms close to
the oxygen atom.

This problem has received a good deal of the-
oretical and numerical attention, ' ' and the best
numerical estimates of the entropy are in ex-
cellent agreement with experiment. ' While the
problem has also attracted the attention of math-
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ematicians, no exact analytic solution of the
problem has heretofore been obtained.

%e have succeeded in solving the two-dimen-
sional version of the problem which may be
formulated as follows: Let the vertices of a
square N &&N net (as in the Ising model) repre-
sent the oxygen atoms, and on each bond draw
an arrow (up or down for vertical bonds and
left or right for horizontal bonds). The "ice
condition" is that there must be precisely two
arrows into each vertex. If M=X', then for
large M the number of arrangements will be
WM, where W is to be calculated. The entro-
py is Mk in%'. If we ignore the "ice condition, "
then obviously 8'= 4.

The best numerical estimate for 8' in two
dimensions was W=1.540+ 0.001. Our exact
result is

W= (-)' ' = 1.539 600 7.

The calculation uses the mell-known transfer-
matrix formalism which we briefly outline here.
A configuration of the lattice consists of N rows
of N vertical arrows alternating with N rows
of N horizontal arrows. Let y' represent a
definite configuration of the first *'vertical"
row. There are obviously 2+ choices for p'.
Likewise, let cp j be the configuration of the
jth "vertical" row. If y and y' are the config-
urations of two successive "vertical" rows,
let A(y, cp') be the number of ways of placing
arrows on the intervening "horizontal" row such
that the ice condition is satisfied at every ver-
tex of that "horizontal" row. Thus, A is a 2

square matrix whose entries are integers, and

Z, the total number of ways of correctly plac-
ing arrows on the lattice, is then Z = TrAN (as-
suming the lattice to be wrapped on a torus).
As usual, Z=A+, where A. is the largest eigen-
value of A.

In general, a state y' differs from y by the
replacement of certain "up" arrows by "down"
arrows, namely, a +- exchange, or the reverse,
which is a -+ exchange. A little reflection yields
the following matrix elements for A(y, y'):
(i) A(y, y) =2; (ii) for pay', A(y, y') =1 if there
is a. +- exchange between every pair of -+ ex-

changes, and vice versa; and (iii) A(y, p') = 0,
otherwise. If we regard a state y as a state
of N spin- —,

' particles on a line, then the above
rule is equivalent to A. =Ay+A~, where

A =1+ QS. S. + Q S. S. S S
g

i &j i &j&k &l

+ ~ ~ ~ +(S S ~ ~ ~ S S )

Xf(x. ..x )

x] x2
= Z Z

xn

Z f(yl, ",y„)

x2 x3 N

+ Z Z Z f(y "y).
g j =xy p2 =x2 p~ =x~

On the right-hand side of (1) it is to be under-
stood that f is replaced by zero if any yf =yf + 1
(e.g., y, =y, =x,).

We make the following Ansatz for f: I,et (kj
=kg, ~ ~ ~, k„be a set of distinct numbers and
let

f(x, ~ ~ ~, x ) =Q!A(P) exp(i Q k, ,x.j,1' '"
p

where the sum is on n! permutations and A(P)
is some set of n t coefficients. Now, if we in-
sert a given plane wave expfiQkzxzj into the
first sum in (1), we get (assuming no kf ——0)

(2)

(assuming N is even) and A~ =AL . Since S
S;z is a constant, we must decide which

S~ subspace has the largest eigenvalue. It can
be shown, as expected, that S =0 has the larg-
est.

If g is an eigenvector of A, let f(x1, ~ ~ ~, xn)
be the amplitude in i! of the state with up arrows
(spins) at the sites x1 &x2 & ~ ~ ~ &x„(we are in-
terested in n =-,'N). Further reflection shows
that f sa,tisfies

(g .[1-exp(ik .)] j[e '-e ' ' ][e ' '-e ' ' ] ~ ~ fexp[ik x ]-exp[ik (x + 1.)]j.
-1 ik, ik, (x, + 1) ik, x, ik, (x, + 1)

n n-1 Pl Pl

Expanding the above product gives 2& terms. One of these is proportional to the same plane wave we

started with and is desirable. All the others are unwanted because one or more xz's fail to appear.
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The situation is saved, however, because we
are obliged to subtract from (3) those terms
in (1) for which yf =y~+ 1

——xz, and these have
the same character as the unwanted terms.
A similar situation obtains for the second sum
in (1).

By choosing the A(P) correctly we can elim-
inate all the unwanted terms. The rule (which
can be proved by induction) is this: If P and

Q are two permutations which differ only in

the jth and (j+ 1)th position, then

a(P) =A(Q)a(k, q),

where kP(j) =kQ(j+ I) =k and kp(j +1) —kQ(j)
= q, and where

B(k, q) = —[1+T(k) T(q)-T(k)][1+ T(k) T(q)-T(q)]

with T(k) =exp(ik). Finally, periodicity comes
in through the n conditions

e px(ik n) = g. B(k., k.).
2 . . 2'j

jg2
(5)

fa,ct that f(xl, ~ ~ ~, x„)&0. For this state,

n

Q k. =O.

j —1

As N - ~ one introduces a density function

p(k) for the k's. This function satisfies an in-
tegral equation which, fortunately, can be solved
exactly for S~ = 0. All the details are in Ref.
7 where it is shown that in terms of a new vari-
able o. defined by e~k =(e~P e~-)(e'P + ~-I)
(with cosy, =--,'), the density function is given

by R(o.) = [4 p, cosh(vu/2&&, )]
Thus, we have

N '2 1M = fd—k p(k) ln(2-2 cosk),

1 3dn ( 3
!ln! 1-

2~ ~ 4 cosh(3o/4) ( 1+ 2 cosho.
&

'

= 3 ln(-;).

Therefore, W=&1/N =(')3/2
I should like to thank Professor S. Sherman

and Dr. J. Nagle for introducing me to the prob-
lem.

n n

&t =1 g (l-expik. ) ')(i+exp(ipk. )j.
j=1 1

7

It will be recognized that our wave function
as defined by (4) and (5) is exactly the same
as that for the anisotropic one-dimensional
Heisenberg. model'.

(6)

1V

H = —Q S. S. +S. S. + 2S. S. . (7)
2 2+1 2 2+1 2 2+12=1

Our eigenvalue (6) is different, however. For
n even, the solution to (5) is such that no k = 0

and thus our previous analysis is correct. Fur-
thermore, the maximum eigenstate of the trans-
fer matrix and the ground state of (7) are iden-
tical because both are characterized by the
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