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FIG. 1. Solar-flare increase as observed by superneutron monitors at Sulphur Mountain and Calgary (see text}.

itors at this station and find the ratio of per-
centage increase of the supermonitor to that
of the IGY monitor to be 1.03 + 0.05, indicating
that the effective responses are very similar.
This suggests that the chain of supermonitors
can be intercompared directly with the IGY net-

work of stations.
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The electromagnetic renormalization of the M =0 weak vector coupling constant 'Gy
coming from the corrections to the vector part of the weak Hamiltonian is a universal
divergent constant, independent of the details of the strong interactions.

An elegant feature of the V—A theory of weak
interactions is that the vector part of the AS
=0 hadron current is proportional to the iso-
spin current. This assumption, and the hypoth-
esis that the isospin is conserved by the strong
interactions, are known jointly as the conserved-
vector-current (CVC) hypothesis. An impor-
tant implication of this view is that the ratios
of the renormalized to unrenormalized isovec-
tor coupling constants are equal for all process-

es. When supplemented with the notion of a
universal coupling for the isovector current,
these conclusions predict simple relations among
the observed isovector coupling constants. ' 3

In order to check the validity of this picture,
it is important to calculate the corrections to
the vector coupling constants arising from the
electromagnetic interactions. The electromag-
netic corrections to the decay p, -e+ v+ v have
been calculated to order e.4 ' Early attempts
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to calculate the corrections to G& in neutron

P decay essentially ignored the complications
of the strong interactions and led to a logarith-
mically divergent result which could only be
estimated in terms of a cutoff. 4 7 More recent-
ly it has been shown that this logarithmic di-
vergence probably persists even if the effects
of the strong interactions are included. ' Equa-
tion (9.20) of Ref. 8 gives the "divergent part"
of the isovector decay amplitude. This expres-
sion is universal in the sense that it is inde-
pendent of the details of the strong interactions;
except for simple factors dependent on the iso-
spin of the decaying particle, it is the same
for all amplitudes.

We shall show here that to second order in
e', to first order in Gy, and to zero order in
the momentum carried off by the leptons, the
matrix element of the isovector part of the
weak Hamiltonian density Kg ~ is given exact-
ly by Eq. (9.20) of Ref. 8. That is, not only
is the divergent part of the amplitude indepen-
dent of the details of the strong interactions,
but all the finite contributions cancel in the
limit of zero momenta for the leptons. For
leptonic decays (e.g. , w -w'+e+ v, etc. ) in-
volving hadrons belonging to the same isomul-
tiplet, the lepton momenta are of order 0. ,
and hence our result implies that the electro-
magnetic corrections to the isovector part of
all such decay amplitudes are given to order
o. by one universal (divergent) factor. That
is, with the definition

dk
4 1

2 (2 )g (y2 te)2

the contribution of the vector hadron current
to amplitude for @~3 decay, for example, is

(a) (b) (c)

FIG. 1. The electromagnetic corrections to 7I'&3 decay.

given to order e by'

0 V
(w evlK& lw )

=(V"Z )G~u(e)(f +8' )(1+r )v(v),

where

/~&)t, [4,r (1+r )0

+0 r (1+r )( ]+H c, (8)
p A, 5 v~

and t+& is the charge raising component of the
isospin current. To order e', the total decay
amplitude also includes a part (w evl&~ IF)
from the axial-vector hadron current.

In order to demonstrate our result, we con-
sider for definiteness the decay m

—m'+e+ v.
To order e there are three kinds of electromag. —

netic corrections to the decay amplitudes of
Eqs. (2) and (3). These are indicated in Fig. l.
Figure 1(a) is the order-a part of the isospin
matrix element (wol t+&Iw ). To order n (wo

-n),
(w'lt Iw )=A(w'+w )

+p,

The calculation of A can best be done using
the methods of Fubini and Furlan. '0 Consider

0= fd'x& (w IT[t (x)t 4(0)]lw )=2(w It 4(0)lw )+ fd'x(w IT[8 t (x)t (0)]lw ). (4)

Setting" (w lt„(0) lw ) =2w, and noting that the w' intermediate state yields a. contribution (to order
n) to the second term of Eq. (4) equal to 2IA I w, , we can divide by w, =tE and obtain

(2w)'
IA I

2-2 = ) 6~(n-w )
n

(w IB t In)Q It lw ) (w lt In)(nl& t lw )
4 -4+--

E —E -ie E -E -i~
n n

where the prime on the sum indicates that the m' intermediate state is absent. The delta function

in (5) allows one to replace t 4 by s&t & and divide by another power of E„E.Keeping only—inter-
mediate states in) containing a photon (no others contribute to order n) and employing the relations'~"

8 t = +ieA
P, +ILL P, +P,
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to contract out the photons, we obtain after some algebra"
2

A=v2 1+, d kD (k) d xe (rr IT[t (x)t (0)]lrr )8E 2~ ' ~40 +A. —p,

where D~&(k) is the Feynman propagator of the photon. This result also appears in Ref. 8.
Since e multiplies the integral in Eq. (7), we can use isospin invariance to manipulate the integrand

into a form more convenient for comparing with the corrections of Figs. 1(a) and 1(c). Isospin syrn-

metry gives

Jd xe (rr I T[t (x)t (0)]lrr )

=W&Jd xe (rr I T[j (x)t (0) ]Irr )+2(d xe (rr I T[j (x)t (0)] Irr ),
+A.

(8)

where j is the electromagnetic current. The second term on the right-hand side of Eq. (8) does
not contribute to the integral in Eq. (|). This follows from TP invariance" and does not depend up-

on the external particle being a pion. Therefore, if we define

T (k, rr)=i' xe (rr I T[j (x)t (0)]lrr ),
Xp, +A.

the expression in Eq. (7) for the correction of Fig. 1(a) can be written as

2

(9)

(10)

The corrections shown in Figs. 1(b) and 1(c) can also be obtained by using current commutators

and an expression for B&t3& analogous to Eq. (6). However, for present purposes let us simply write

down the formal expression represented by Figs. 1(b) and 1(c).8 Combining these contributions with

that of Eq. (10), the matrix element in Eq. (2) becomes

G ie' 8

(rr evlK Irr ) = u(e) v2- 4 d kD (k) (T -S ) (P +f )
0 V — W 4 0

ie2 m-P-g+,JdkD (k)y —, . y (T -S )
4

Ap vk +2e k ie p. &p, &p. —

v2 ze'
r 4

m-P-P'

4JI d kD (k)y, . z —&m . (P +rr ))(1+@ )v(v), (11)
0

where 8&& is a constant related to the Schwinger term. It occurs only in theories with a local A

coupling and gives the part of the Compton amplitude not contained in the time-ordered product. Since

it is independent of k it contributes nothing to the first term of Eq. (11) and is included only to sim-

plify our remarks.
We now show that the effects of the strong interactions, which are hidden in the T&&, cancel corn-

pletely to zero order in the electron momentum. First let us note the relation

k (T -S )=k (T -S )=-2v2rr
A. p A. IM A. pA. p, A p' (12)

which is readily derived from Eq. (9) and the usual equal-time commutator ofj,(x) and t+~(0). Us-

ing Eq. (12) it is fairly easy to check that the matrix element in Eq. (11) is gauge invariant. '3 We

are thus free to use the Feynman gauge, D& (k)= 5& /(k' —r'e). If we integrate by parts the first term

of Eq. (11), write the result covariantly, and keep only the part of the second term which contributes
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to zero order in the electron momentum, we obtain

ze d4&
0 V — W 0 2

(m eTIX i7t )= u(e) v2y(v +v )-, 4, . - 2-(k mT g+m y gy T )
2 0'-ie ' lA ~ & p.

( &e' d'a m-g-P' 1

(13)

But

d4k d4k 1 de
(k -/e) X iL A. p p, (0 -EE) A. Ap m (0 —EE') A. A.

,y ky T =2y, . ,a 7 —. . . .a~-T

Using (12) to simplify the first term on the right-
hand side of Eq. (14), substituting (14) into (13),
and taking the limit of zero electron momentum
in the third term of Eq. (13) leads to the result
stated in Eqs. (1) and (2). The two terms con-
taining T&& exactly cancel.

A similar calculation can be performed for
any P decay in which the mass difference of
the hadrons is of electromagnetic origin; for
exa.mple, If -&++e+ v, n-p+e+ v, Z -Z'
+e+ v, O' -N' +e++ v, etc. For all the spin-
zero hadrons the argument is analogous to the
one presented for the pion. When the hadrons
have spin, our remarks apply to the "charge"
form factor (e.g. , the coefficient of y& for spin
—,'). This can be seen by carrying out the same
calculation for the spin average of the ampli-
tude.

In all these decays the ratio of the renormal-
ized to unrenormalized isovector coupling con-
stants is given by the one divergent factor de-
fined in Eq. (1).

Concerning the input leading to our result,
essentially everything follows from Eq. (6) and

the equal-time commutation relations among
the isospin and hypercharge currents. Only

the time-time and time-space components of
the commutation rules have been used, and pre-
sumably these are the most reliable. We be-
lieve that Eq. (6) is equivalent to minimal cou-
pling of the electromagnetic field, "and hence
that we have assumed the charge-conjugation
invariance of electromagnetic interactions.
Equation (6) is reminiscent of Yang-Mills con-
ditions; whereas our result resembles the Ward-
Takahashi identity. This suggests that it might
be possible to prove it from some general prin-
ciple.

Early calculations of electromagnetic mass
splittings are also logarithmically divergent. '
It is now believed that this divergence is due

!
to the use of perturbation theory, and that in-
clusion of the strong interactions to all orders
will give finite results, which depend, through
tensors like our T», on the details of the strong
interactions. " We have shown here that the
situation for the electromagnetic corrections
to that part of Gy arising from the vector had-
ron current, at least up to order n, is just the
reverse; namely, that they are described by
one infinite constant, which is completely in-
dependent of the strong interactions.

This work seems to eliminate the hope of
checking the Cabibbo form of universality, un-

less, as in p decay, ~ ' the contribution to the
renormalized G& coming from the axial-vec-
tor current is also divergent in such a way as
to cancel the ultraviolet divergence in Eq. (1).

We remark that the apparent infrared diver-
gence of Eq. (1) is spurious and can be elimi-
nated by more careful treatment of the electron
momentum dependence near k = 0. These and

other details will be published elsewhere.
After completion of this work, Professor
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The existence of the I= p K"(1420) meson has
been established in many experiments. ' Stud-
ies of the K*(1420) decay angular correlations'&2&~

have ruled out J =0+ and suggested 2+ as the
likely 4+ value. However, uncertainties due

to large background and/or the absence of in-
dependent information of the K*(1420) alignment
do not permit one to rule out 1 and 3 . We
report here an analysis of a relatively clean
K*(1420) sample, in which we make use of the
production dynamics to ascertain the resonance
alignment. Although model-dependent assump-
tions are used, the inherent discrimination
among spin-parity values is so marked that
we consider the analysis sufficient to rule out
1 conclusively, and to make 3 unlikely.

The data discussed below come from 4.6-
and 5-BeV/c K P interactions, obtained in
an exposure of -300000 pictures in the Brook-
haven National Laboratory 80-inch hydrogen
chamber. s The production of the K*(1420) is
observed in the two readily identifiable reac-
tions

K +p -K* (1420) +p

and

K +P -K* (1420)+n

+n++m (4)

containing 1180 and 1,500 events, respective-
ly. Investigation of all two- and three-parti-
cle mass combinations reveals that there is
little N*, p, or ~0* formation, both final states
being dominated by K*(890) production. More-
over, there appear to be no kinematically in-
duced complications' (e.g. , Deck mechanisms)
in Reaction (2). These circumstances simpli-
fy the interpretation of the mass spectra rel-
evant to the identification of the K (1420), i.e. ,
the M(Kw) spectrum from Reaction (1) and the
M (Kmm) spectrum from Reaction (2). These
spectra are shown in Figs. 1(a) and 1(d), re-
spectively. From these figures one sees that
Reactions (1) and (2) contain the quasi-two-
body reactions

and

K +P -K +n++m +n, (2)
with about t0 K*(1420) events in each channel.
The combined enhancements yield a mass and
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