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Table I. Energy splittings (in eV) and effective elec-
tron mass of cubic ZnS as calculated by the KKR meth-
od and by CB in comparison with the experimental val-
ues found by Cardona and Harbeke, 4 by Baars, a and by
Kukimoto. The values given in parentheses are those
that were fitted by CB. They originate from the same
experiments but were extrapolated to T =0. The lattice
constant used in our calculation as well as by CB is re-
lated to room temperature.

kind of interpolation scheme is suitable if one
wants to know the energy throughout the Bril-
louin zone. Moreover, the KKR method (like
the APW method) has been modified to include
spin-orbit coupling and relativistic effects (see,
e.g., Treusch and Roessler"). So we hope that
this method will be helpful in semiconductor
resea. rch as it was in the theory of metals.
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data. Since the method is able to exhibit bands
originating from atomic levels as well as free-
electron bands, one can use it to decide what
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The strength, line shapes, polarization selection rules, and magnetic field behavior
of two-magnon light scattering in antiferromagnetic MnF2 are reported, and they are in-
terpreted in terms of an excited-state exchange coupling between sublattices and the
magnon dispersion relation

We present theoretical and further experi-
mental' results on the second-order scatter-
ing of light by magnons in antiferromagnetic
MnF, . The two-magnon spectra are interpre-
ted using the known magnon density of states
and a new mechanism for light scattering based

on excited-state exchange interactions between
the two ma, gnetic sublattices. The theory sat-
isfactorily explains (1) the polarization selec-
tion rules governing the scattering, (2) the
behavior of the scattering in applied magnet-
ic fields, (3) the relation of the sharp features
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in the second-order spectra to the critical points
in the magnon density of states, and (4) the
magnitude of the two-magnon scattering, which
is surprisingly large r'elative to the one-mag-
non scattering. These results comprise the
first complete quantitative interpretation of
a second-order Baman spectrum, based on
the neutron-measured dispersion relation.

An experimental arrangement similar to that
in Ref. 1 was employed. The experimental
geometry is indicated by the letters in Fig. 1.
For example, "xz" means that the incident
light was linearly polarized in the "x"direc-
tion, while the scattered light observed was
polarized parallel to the crystal c axis in the
"z"direction.

The two-magnon spectra of MnF, at -10'K
are shown in Fig. 1. A single, rather sharp
peak appears in both the "xy" and the "xz"
spectra. The "xx" spectrum is broad, weak,
and featureless, and has accordingly not been
included in Fig. 1. The "xy" peak is centered
at 98 cm ', is rather symmetric, and has
a full width at half-maximum of about 4 cm
of which about 2 cm ' is instrumental. The
"xz" peak is noticeably asymmetric, having

(a) XZ—EXPERIMENT-- NEAREST
NEIGHBOR

a high-frequency cutoff at about 100 cm ' and
a width of about 12 cm '. The integrated in-
tensities of the two spectra are comparable,
the extinction coefficient h being of order 10
cm ' sr ' in both cases. This is of the same
magnitude as.the previously observed two-mag-
non scattering in FeF„where the second-or-
der process' is 2-3 times stronger than the
first-order process. '

As in the two-phonon Raman effect, momen-
tum conservation requires that the two mag-
nons which scatter the light have essentially
equal and opposite wave vectors (k and -k)
and hence equal frequencies, since uk=~
In the absence of external fields the magnon
dispersion curve in MnF, has a single doubly
degenerate branch. The frequency associated
with the pair of magnons for a given k is thus
unique, and interpretation of the two-magnon
spectra is much simpler than is usually the
case for phonons. The shift in frequency of
the scattered light should range between 2aI.
and 2+@ [the subscripts refer to points in the
Brillouin zone pictured in the inset of Fig. 1(b)].
The shapes of the second-order spectra are
determined by the two-magnon density of states
weighted to account for the k dependence of
the scattering interaction.

There are four basic two-magnon states for
each pair of wave vectors k and -k:
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FIG. 1. Theoretical and experimental spectra for
second-order magnon scattering in MnF2 at 10'K. In-
tensity of theoretical curves are normalized to experi-
ment. {a)"xz" experimental geometry, and (b) "xy"
experimental geometry; inset shows Brillouin zone and

critical points.
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The state I0, -) is responsible for the electric
dipole two-magnon absorption. ' It is impor-
tant to determine which of the positive-parity
states contribute to the two-magnon Raman
scattering. The Sz =+2 two-magnon states in-
volve excitation of two magnons on the same
sublattice, and would have their energies shift-
ed by an applied magnetic field at a rate of
about a0.2 cm '/kOe. 4 The S~ =0 state, on

the other hand, is formed from one magnon
on each sublattice and its energy should show

no dependence on magnetic field. We have ob-
served no change in the spectra of Fig. 1 in
fields up to 50 kOe applied either parallel or
perpendicular to the c axis. The same was
found for the two-magnon peak in FeF, . Thus
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experimentally the 8 = 0 state is seen to be
the important one for two-magnon scattering.
The observed magnetic field behavior also rules
out the previously mentioned possibility' that
the scattering might be due to one magnon plus
one phonon.

The first-order magnon scattering' is thought
to occur by an indirect electric dipole inter-
action involving the spin-orbit interaction. '~'

This mechanism also predicts a second-order
scattering, but with an intensity much small-
er than the first-order scattering, in disagree-
ment with experiments on FeF, .' Here we pro-
pose that the two-magnon scattering occurs
by an excited-state exchange interaction sim-
ilar to that invoked by Tanabe, Moriya, and

Sugano' for the two-magnon absorption process.
This appears to be a much stronger mechanism,
and will be discussed in greater detail else-
where'~'; here we outline the main features
of the mechanism which pertain to the experi-
mental results cited above. We emphasize that
this mechanism does not contribute to one-mag-
non light scattering.

I.et E, and E, be the electric vectors of the
incident and scattered light waves, and consid-
er two representative ions i and j on the two
sublattices. We suppose that in the ground
state ion i (j) has an electron with coordinate
r, (r,) and S~ = —,

' (-—,') in an orbital yf (yj).
The matrix element for a Raman process ac-
companied by simultaneous spin transitions
of ions i and j can be written

(y.&leE ~ r ly &)&. . "(y &leE ~ r ly. &)j 2 1 v ij p, 1 1 i +M. . =, +11 similar termsj S. S. .
sj Z

/J, V

The 11 similar terms have different ordering of operators or r, replaced by r, . Here yv and y
are excited odd-parity electronic states with energies E and E, ~, is the incident frequency, and
& '"=(q &y & le /lrl-r2liV &V &)sj 2 v 1

The above matrix element must now be summed over all pairs of ions i and j on the two sublattic-
es taking account of the symmetry of the lattice. If the sum is restricted to nearest-neighbor pairs
of spins on opposite sublattices, it can be shown by group theory' that the spin Hamiltonian for the
Raman process in which one magnon is excited on each of the sublattices has the form

H = QQ(E E +E E )+BE E +C(E E +E E )o. . cr. .

+D[(E E +E E )o. . o. . +(E E +E E )o. . o. . ]ij ij 1 2 1 2 ij ij

+F[(E E -E E )o. . cr. . -(E E -E E )o. . o. . ]]S. S. +c.c.,ij ij 1 2 1 2 ij ij i j (2)

where A, B, C, D, and F are coupling constants like M,&
given by Eg. (1) with the electric fields

and spin operators removed and appropriate components of r, and r, inserted; nz&
——sgn(rz-rj)~,

where e =x, y, z, determines the relative phases with which the contributions of the j neighbors of
a given spin i are to be combined.

The spin operators Si and Sj in (2) can now be transformed into magnon operators in the usual
way" and the extinction coefficient calculated by time-dependent perturbation theory. For example,
the term proportional to C gives rise to an extinction coefficient

k =(64S q M (d C /Vq c )(E' E +e e )
xy 2 3 2 4 x y y x2

2 2 2 2 . 2x~(n +1) (u- +v ) sin —,'k a sin —,'k acos —,'k c 6(~ -&u -2~-),
k k k k x y z
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where S is the ionic ground-state spin, g, and

g, are the refractive indices for the incident
and scattered light waves having frequencies

and &, and po lariz ation vectors 7, and q» p is
the crystal volume, nk is the thermal magnon
population number, wk and vk express the frac-
tion of the magnon excitation residing on each
sublattice, " and a and c are the lattice constants.
Equation (3) shows clearly the dependence of
the extinction coefficient on the magnon densi-
ty of states determined by the delta function.
The unweighted density of states has been il-
lustrated by Allen, Loudon, and Richards. '
We emphasize that the excited-state exchange
mechanism proposed here predicts no scatter-
ing from the Sz=+2 two-magnon states, in agree-
ment with experiment.

The spectra calculated using Eq. (3) and sim-
ilar expressions for the other polarizations
appear as short dashed lines in Fig. 1. Espe-
cially in the "xz" case, agreement with exper-
iment is improved by taking an extended range
of excited-state exchange interaction between
the ions i and j on opposite sublattices. " Since
the excited-state wave functions are more spread
out, the exchange matrix element for the ex-
cited state falls off more slowly with distance
than for the ground state. If we assume an ex-
ponential fall-off as exp(- I r&-rf i/r0) for the
coupling, we calculate the second-order spec-
tra indicated by the long dashed lines in Fig.
1 using a range parameter ro = 0.4a. The an-
isotropy fields and first-, second-, and third-
neighbor exchange constants used here are II~
=1.05'K, Z, =0.35'K, J,=-1.735'K, and J,
= -0.025'K and are consistent with the neutron-
scattering data of Okazaki, Turberfield, and
Stevenson. "

The theory is seen to predict correctly the

peak positions and general shapes —i.e., sym-
metry versus pronounced asymmetry —of the
"xy" and "xz" spectra. The unillustrated "xx"
spectrum is also correctly predicted to be broad
and featureless.

The particular critical-point features of the
magnon density of states which are emphasized
by the weighting functions for different exper-
imental geometries can be predicted by group
theory &' irrespective of the nature of the Ra-
man-scattering interaction. For "xy" the peak
position indicates the magnon frequency at the
point M. The R-point frequency is obtained
from the cutoff in the "xz" spectrum. Combin-

ing this information with the frequency at I'

determined by first-order Raman scattering,
one has enough information to obtain the mag-
non dispersion relation for crystals where this
is not already known. '

Finally, the relative extinction coefficient
for two-magnon and one-magnon scattering
may now be estimated assuming the latter pro-
ceeds via spin-orbit coupling. '&' The result
issue

] 28SP
ig 0

pg, (u, + v, )'A, '(Ku), )' ' (4)

P. A. Fleury, S. P. S. Porto, L. E. Cheesman, and
H. J. Guggenheim, Phys. Rev. Letters 17, 84 (1966).

2In Ref. 1 it is stated that for the two-magnon process
in FeF2, the "xx" and "yy" components were much
stronger than the "xy." This is an error due to a mis-
orientation of that sample in the xy plane. The true
relative strengths for the "xx" and "xy" components
agree with the results for MnF2 discussed here.

~S. J. Allen, Jr. , R. Loudon, and P. L. Richards,
Phys. Rev. Letters 16, 463 (1966).

4A value of g=2 has been assumed.
~R. J. Elliott and R. Loudon, Phys. Letters 3, 189

(1963).
~Y. R. Shen and N. Bloembergen, Phys. Rev. 143,

372 (1966).
7Y. Tanabe, T. Moriya, and S. Sugano, Phys. Rev.

Letters 15, 1023 (1965).
P. A. Fleury and R. Loudon, to be published.

BR. Loudon, to be published.
~ J. O. Dimmock and R. Q. %heeler, Phys. Rev. 127,

391 (1962).
~~See, for example, C. Kittel, Quantum Theory of

where X is the excited-state spin-orbit coupling
and E, is the excited-state energy. Evaluating
for MnF„Eq. (4) gives h2/hl = V~g/10 (with

V~& in cm '), using'~ A =1000 cm '. Because
of the low frequency of the zone-center mag-
non (-8 cm '), we have not observed one-mag-
non scattering in MnF, . However, we may rough-

ly test the theory for FeF» where Eq. (4) pre-
dicts h2/hl = Vf&'/60. Together with the observed
ratio h, /h, =2, this implies V~&=10 cm
This is the same value obtained by Tanabe,
Moriya, and Sugano' for the similar excited-
state exchange controlling two-magnon absorp-
tion in FeF, .
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Many perovskites are capable of a ferroelec-
tric transition from a cubic to a tetragonal phase.
This transition is accompanied by movements
of the ions within a single unit cell relative
to one another. This lattice polarization caus-
es splitting and shifting of the critical points
of the cubic band structure. Recently sever-
al authors'~' have suggested that a similar po-
larization may be caused by external electric
fields, and a preliminary estimate of the mag-
nitude of this effect has been made for the sin-
gle critical point X we -X

Here a more complete analysis of the polar-
ization dependence of the Kahn- Leyendecker'
LCAO band scheme for SrTiO, is considered.
It takes into account the reduction of point group
symmetry from Oh to C4 which occurs when
the ions are moved along an [010J direction.
This lower symmetry allows some of the ma-
trix elements between the tight-binding states
to be nonzero which were zero in the undistort-
ed situation. These new matrix elements which
break the cubic symmetry are of two types.
One of these is nonzero because of the chang-
es that the displacements introduce in the cu-
bic LCAO parameters PPw, PPo, Pdz, and Pdv.
These changes were estimated by assuming,
e.g. , for pdv,

pdm = (pdm)OS/So,

where S is the overlap integral between Wat-
son's analytic Hartree-Pock wave functions
and subscripts indicate evaluation for the cu-
bic configuration. Further discussion of this
approximation is referred to by Kahn and Ley-
endecker. ' The other type arises because the
lines joining various pairs of atoms are no lon-
ger mutually perpendicular. These matrix ele-
ments contain as a factor the cosine of the an-
gle between bonds (an angle near 2v) and so
vanish as the bonds become orthogonal. All
these matrix elements were evaluated in the

Table 1. Selection rules dictated by the lower sym-
metry of the distorted case.

Polarization Transition Point

[1oo]

[o1ol Only between levels of
the same symmetry type

1,X))
Mg
M

))
[110]

x&[1oo]
My[011]
x'& [oo1]

All points

two-center approximation of Slater and Koster. '
One result of the lower symmetry of the dis-

torted case is that the X points and also the
M points split into two sets for which the group
of the wave vector is different. Taking the di-
rection of the displacements as [010], the [100]
and [001]& points are labled &~ and the [101]I point is labeled M~. The other points are
labeled X~~ and M ~~. It is then found that the
lines I"-XII and M~-8 have the full point group
symmetry C4~ and hence have representations
Aj and Tj. From ~~-M]~ the symmetry is
C2v and the representations are Zj For r

and XII II
the only symmetry operation

aside from the identity is a single reflection
plane —the xy or else the y~ plane —and the rep-
resentations are labeled 0 or U depending on
whether they are even or odd under reflection.
Symmetry then dictates the selection rules list-
ed in Table I in the notation of Bouckaert, Smol-
uchowski, and signer and Hamermesh. 6

Although the LCAO parameters used in Ta-
ble I are for SrTiO» a very similar band struc-
ture should apply to BaTiO, .' To gain some
idea of the band structure for tetragonal BaTiO.„
the atomic displacements were chosen to cor-
respond to this material. ' The resulting band
structure is compared with the cubic Kahn-Ley-
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