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procedure for extending the calculation since
the orthogonal polynomials provide a complete
set of wave functions so that perturbation the-
ory can be used. Thus, one could expect to
obtain an improved value of E, and to calculate
phonon lifetimes.

The author has enjoyed discussing various
aspects of this work with N. S. Gillis, N. R.
Werthamer, W. J. Mullin, and L. H. Nosanow.
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agreement. However, the calculated phonon
energies differ significantly near the edge of
the Brillouin zone. These results also obtain
at other densities.

We feel that the theoretical approach outlined
here offers a unified method of treating both
highly anharmonic and slightly anharmonic sys-
tems by the expansion of the potential in gen-
eral three-dimensional orthogonal polynomials
or three-dimensional Hermite polynomials,
respectively. In addition, the latter expansion
has definite advantages over the conventional
Taylor series expansion, "although the math-
ematical techniques of II are required to per-
form it. In contrast with the theories of Refs.
6 and 7, one is provided here with a clear-cut

FIG. 2. Phonon dispersion curves in the [110]direc-
tion at a specific volume of 21.5 cc/mole. The solid
curves are results of this paper, the dashed curves
are computed from the theory of Ref. 7.

~T. R. Koehler, Phys. Rev. Letters 17, 89 (1966);
this paper will be referred to as I.

2M. Born, in Festschrift zur Feier des zweihundert-
jahrigen Bestenhens der Akademie der Wissenschaften
in Gottingen. I. Mathematisch-physikalische Klasse
(Springer-Verlag, Berlin, 1951), p. 1; D. J. Hooton,
Phil. Mag. 46, 422 (1955).

3T. R. Koehler, Phys. Rev. 144, 789 (1966); this pa-
per will be referred to as II.

40ne constructs these wave functions by multiplying
I 0) by three-dimensional polynomials in the q~ which
are products of Hermite polynomials in the normal co-
ordinates Qy

~When f= 1 this process recovers the traditional har-
monic oscillator wave functions.

8L. H. Nosanow, Phys. Rev. Letters 13, 270 (1964);
Phys. Rev. 146, 120 (1966).

L. H. Nosanow and N. R. Werthamer, Phys. Rev.
Letters 15, 618 (1965).

N. G. van Kampen, Physica 27, 783 (1961).
8J. H. Hetherington, W. J. Mullin, and L. H. Nosan-

ow, Phys. Rev. 154, 175 (1967).
~OFor example, in perturbation theory, the nth term

in the expansion of the potential has matrix elements
only between states in which the total number of pho-
nons is n so that ground-state expectation values of
higher order terms are eliminated.

BAND STRUCTURE OF CUBIC ZnS (KORRINGA-KOHN-ROSTOKER METHOD)

P. Eckelt, O. Madelung, and J. Treusch
Institut fur Theoretische Physik (II) der Universitat Marburg/Lahn, Marburg, Germany

(Received 16 March 1967)

Calculating the band structure of semiconduc-
tors crystallizing in the diamond or ZnS struc-
ture is a very interesting but also a difficult
problem. Self-consistent calculations as per-
formed by Herman' are extensive and until now

only completed for Ge, Si, and grey tin (a per-
turbation calculation had to be added a poste-
riori). Results obtained with the aid of the pseu-
dopotential-interpolation scheme have been
published for 14 semiconductors by Cohen and

Bergstresser' (hereafter referred to as CB).
But in spite of the striking success of this pa-
per, the method is not fully satisfactory, since
it is an empirical one and depends on a great
deal of experimental data which must be inter-
preted properly.

To adopt a middle course-not as extensive
as orthogonalized-plane-wave self-consisten-
cy but starting nearly from first principles —we
undertook an application of the Green's func-
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tion method [Korringa, Kohn, and Rostoker
(KKR)] to semiconductors. ' The main interest
of the present work was to test the accuracy
of the KKR method by applying it to a well-known
semiconductor. ZnS served as an example since
enough experimental information~ and a well-
fitted theoretical band structure' were avail-
able, thus enabling us to check our results.
%e are well aware of the shortcomings of this
method which are due to the use of a muffin-
tin potential. But, on the one hand, the band
structure seems not to be influenced strongly
by the special form of the assumed potential,
a result that came out of our calculations and
that was suggested by several authors (see e.g. ,
Phillips' ). On the other hand, the type of bind-
ing is partly ionic in ZnS; i.e., the muffin-tin
potential is not so far from nature as, e.g.,
in dia. mond. Augmented-plane-wave (APW)
calculations on ZnS' yielded results that were
in qualitative but not in quantitative agreement
with experiment. The KKR method, although
related to the APW method, seems to have some
advantages: E.g., there is better convergence
as to the l summation (we included l = 2), the
wave function is continuous with continuous
derivatives, potential and structure are clear-
ly separated in the resulting secular determi-
nant. Moreover the KKR method had already
given good results for the hexagonal semicon-
ductors Se and Te.'

We used a potential V, (r) (Fig. l) that was
built up by superimposing self-consistent atom-
ic potentials. ' The radii BZn =2.16mB and AS
=2.27mB were determined by the point of zero
slope of V,(r). The only free parameter, name-
ly, the constant potential outside the muffin-
tin spheres was adjusted to V, = -1.364 Ry in
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order to fit the experimentally measured en-
ergy gap. The calculated band structure (Fig.
2, Table I) was in a,stonishingly good agree-
ment with experiment' and there was a strik-
ing resemblance to the results of CB. That
is a proof of these results as well as a proof
of the fact that the KKR method is a very pow-
erful tool also in calculating band structures
of semiconductors. Fitting the value of just
one transition gives the values of six transitions
more and the electron effective mass' with an
accuracy comparable with or even better than
that obtained by CB who used six parameters
to fit experiment. ' Moreover, while the d bands
cannot be produced by a pseudopotential calcu-
lation, they are given in our model and are
in quite good agreement with experiment. '~"

Changing the potential as depicted in Fig. 1

[V(r) = V2 with Vo = -0.594 Ry] does not change
any transition by more than 5 /p. The bad agree-
ment of the I"»-I"» transition which is found
in our calculation and by CB may be due to the
assumption of a spherically symmetrical po-
tential. A hint in this direction was also giv-
en by Herman, ' who found the corresponding
levels in Si and Ge about 0.5 eV below those
coming out of pseudopotential calculations. '

Our results show that the KKR method can
serve as an excellent starting point for band
calculation if self-consistent calculations are
too extensive or if there are few experimental
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FIG. 1. Qualitative picture of the potentials used to
calculate the ZnS band structure.

FIG. 2. The band structure of cubic ZnS as calculat-
ed by the KKR method and the results of Cohen and
Bergstresser~ 4', dashed lines).
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Table I. Energy splittings (in eV) and effective elec-
tron mass of cubic ZnS as calculated by the KKR meth-
od and by CB in comparison with the experimental val-
ues found by Cardona and Harbeke, 4 by Baars, a and by
Kukimoto. The values given in parentheses are those
that were fitted by CB. They originate from the same
experiments but were extrapolated to T =0. The lattice
constant used in our calculation as well as by CB is re-
lated to room temperature.

kind of interpolation scheme is suitable if one
wants to know the energy throughout the Bril-
louin zone. Moreover, the KKR method (like
the APW method) has been modified to include
spin-orbit coupling and relativistic effects (see,
e.g., Treusch and Roessler"). So we hope that
this method will be helpful in semiconductor
resea. rch as it was in the theory of metals.
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data. Since the method is able to exhibit bands
originating from atomic levels as well as free-
electron bands, one can use it to decide what

~F. Herman, R. L. Kortum, C. D. Kuglin, and R. A.
Short, J. Phys. Soc. Japan Suppl. 21, 7 (1966).

~M. L. Cohen and M. H. Bergstres ser, Phys. Rev.
141, 789 (1966).

3J. Treusch and R. Sandrock, Phys. Status Solidi 16,
487 (1966).

4M. Cardona and G. Harbeke, Phys. Rev. 137, A1467
(1965).

5J. C. Phillips, J. Phys. Soc. Japan Suppl. 21, 3
(1966).

~U. Roessler and M. Lietz, Phys. Status Solidi 17,
597 (1966).

F. Herman and S. Skillman, Atomic Structure Calcu-
lations (Prentice Hall, Inc. , Englewood Cliffs, New
Jersey, 1963).

H. Kukimoto et al. , Phys. Letters 19, 551 (1965).
80f course, not all of the transitions given in Ref. 4

are necessarily conclusive, but the gap seems to be.
The latter is the only experimental value underlying
our calculations. A more detailed discussion will be
possible when more results are available concerning
other II-VI and III-V compounds.
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The strength, line shapes, polarization selection rules, and magnetic field behavior
of two-magnon light scattering in antiferromagnetic MnF2 are reported, and they are in-
terpreted in terms of an excited-state exchange coupling between sublattices and the
magnon dispersion relation

We present theoretical and further experi-
mental' results on the second-order scatter-
ing of light by magnons in antiferromagnetic
MnF, . The two-magnon spectra are interpre-
ted using the known magnon density of states
and a new mechanism for light scattering based

on excited-state exchange interactions between
the two ma, gnetic sublattices. The theory sat-
isfactorily explains (1) the polarization selec-
tion rules governing the scattering, (2) the
behavior of the scattering in applied magnet-
ic fields, (3) the relation of the sharp features
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