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could be based on only three parameters such as the
Cd-ion core shift&E r (Cd), the Te-ion core shift

r (Te), and the shift in the symmetric component
of the [111]Fourier coefficient of crystal potential
away from its first-principles value, &v~(111}. Here
AE o (Cd/Te) denotes a common shift, of all Cd/Te-
ion core levels away from their respective first-prin-
ciples values. The adjusted band structure shown in
Fig. 1 was so constructed that the following three ex-
perimental transition energies were reproduced exact-
ly: E(FIc)—E(I'16„)= 1.8 eV (direct band gap, based
on electroreQectivity data [M. Cardona, K. L. Shaklee,
and F. H. Pollak, Phys. Rev. 154, 696 (1967)l); E(LIc)
E(I 8—„)= 3.6 eV {based on optical [M. Cardona and

D. L. Greenaway, Phys. Rev. 131, 98 (1963)] and elec-
troreQectivity [Cardona, Shaklee, and Pollak, loc. cit.]
data); and E(I'16c)—E (I'16„)= 6.1 eV (based on present
interpretation of 81 shoulder in our photoemission data).
Further theoretical work now in progress is aimed at

including the spin-orbit splitting throughout the zone
and at determining the complex dielectric response
function for CdTe.
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The expansion of a crystal potential in terms of a set of three-dimensional~oglnomi-
als orthogonalized with respect to the weight function f (r1, r2, ' ~ ', riv) exp[(rg —Rz) 'Gg&
~ (r& —Rf)] is shown to be a logical generalization of the previously introduced self-con-
sistent harmonic approximation which is particularly appropriate for highly anharmonic
systems. Explicit expressions for the calculation of the ground-state energy and phonon
spectrum of a crystal at 0 K are given and certain numerical results for solid Hes at O'K
are presented.

The theory of the self-consistent harmonic
approximation was introduced in a previous
Letter. ' This theory combined the idea, orig-
inally due to Born, 2 of finding the optimum har-
monic Hamiltonian

with which one can approximate a true crystal
Hamiltonian

with certain computational techniques introduced
by the author. ~ The essential result is the self-
consistent condition that one should choose C "

lJ= X (0!V; V&~V I 0)/(0 IO) in order to minimize
E, = (0 I H I 0)/(0 I 0).

In the above, A.
' is an expression for the mass,

q.~ is the o.th Cartesian component of the dis-l
placement of the ith particle, whose coordinate
is rf, from its equilibrium position R, , U,&

= V(lr;

—
r& I) is a suitable interatomic potential, and

V= 2Q & U; . The ground-state eigenf unction
of B'(&) is given by 10)~ exp[--,'q; G; ~q t /8]
where G' = 4 .

While one could probably calculate the ground-
state properties of a substance with the anhar-
monicity of, for example, solid neon using per-
turbation theory based upon the eigenfunctions
of IJ("), it is clear that the Gaussian charac-
ter of I0) will not at all be adequate for a treat-
ment of highly anharmonic systems such as
solid helium. A generalization of theory which
remedies this deficiency will be presented in
the following.

If one considers the identity

— 2

f(x)H (x)e dx=
I f(x) e dx,

n n
dx

where IJ is a Hermite polynomial, it is clear
that a term of the form (0 IV; V&~VIO) is pro-

n A

portional to the second term in the expansion
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of the crystal potential in a set of three-dimen-
sional harmonic oscillator wave functions. 4

If one performs such an expansion and selects
the particular set of wave functions to satisfy
BEO/BG . . = 0, the self-consistent condition re-

lysuits.
If one now feels that 10) is not a good enough

approximation to the ground-state wave func-
tion one could try 0 0

=f(x I, x2, , r~) 10) where,
for example, f could be chosen to introduce
short-range correlation. One could then ex-
pand the potential in terms of a new set of three-
dimensional polynomials orthogonalized' with
respect to the weight function 4,'.

A few detailed results of this approach are
readily derived and one obtains an expression
for the ground-state energy of a crystal

E = &Tr(G)+(01 v 10)/(Olf 10),0 eff

where

V «=f [V--,'~ g(~. ) lnf].

This result is similar to that obtained by Nosan-
ow, the essential difference being due to the
use of a correlated Gaussian wave function here.

The requirement BEO/BG "~I =0 yields
l2

(G )..
v

(I v , v . v I)( If I)—( I v . v . f I)( I v f I)
2 i j eff i j eff

& If 'I)'
Iff has the symmetry of the crystal potential,

the lowest excited states, which are obvious-
ly to be identified with one. -phonon states, are
given by Ik~) =Sk;+I q If I 0), where S. is a. uni-
tary matrix which diagonalizes the matrix whose
elements are C &i3' = (0 lq +q if 10)/(010).
The phonon energies are given by

=-,'~ [(sc s ) ]

It is interesting that the phonon energies are
not equal to x~, the roots of the matrix G,
as would be obtained if one made the most ob-
vious combination of the work of Nosanow and
Werthamer' with that of I—that is, if one sim-
ply substituted Veff for V in I. However, one
can show that v~~-(d&~, k-0.

The self-consistency condition, Eq. (5), is
sufficient to provide two desirable results:
(k IHlk'~) ~ 5kkl P and (0 IHlk, kI ) =0. Thus,
the matrix elements of IJ between nonidentical

one-phonon states and between the ground state
and all two-phonon states are identically zero,
a feature which is not present in Ref. 7.

In applying the above theory to a numerical
calculation of certain properties of bcc He' we
have partially followed the approach of Nosan-
ow6 and have taken f=II

& u(lx; x&
—I) with u;.

=exp(- —,'cV. ). The integrals were than evatu-
. v

ated retaining only the lowest order term in
a cluster expansion based on the method of Van
Kampen. ' Recent studies' have shown that high-
er order terms in this cluster expansion are
small when f is as given here. We used c=0.089
and V(v. ) =4~[(o/r)" (o/—x)'] with o=2.556 A

and v = 10.22'K as was done in Ref. 6, 7, and

9. (Then A. '=h2/mo'2e. )

The numerical results for E, and for the [110]
phonon dispersion curves at a specific volume
of 21.5 cc/mole are shown in Figs. 1 and 2,
respectively, by the curves labeled SC (self-
consistent). These are to be compared with

the curves labeled NCG which are calculated
with 10) a noncorrelated Gaussian wave func-
tion (i.e., 6 =al with a chosen to minimize Eo)
according to the theories of Refs. 6 and 7.

The most notable numerical result is the im-
provement in Eo. This obtains much more from
the introduction of a correlated Gaussian wave

function in this work than from the fulfillment
of Eq. (5). One can obtain almost as low a val-
ue of E, if one uses G =ax (a.n arbitrary "rea-
sonable" matrix) and minimizes with respect
to a.

It is apparent that calculations of the veloc-
ity of sound by the two theories are in close

hl

C3
I2.

LL
LLI

K
LLJ

to-

I-
N

L

Cl
8-

O
K
CO

I I

2l 22 23
VOLUME (CC/MOLE)

FIG. 1. Ground-state energy versus molar volume.
The curve labeled SC is the result of the theory pre-
sented in this paper and the curve labeled NCQ is the
previous result of Ref. 6.
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procedure for extending the calculation since
the orthogonal polynomials provide a complete
set of wave functions so that perturbation the-
ory can be used. Thus, one could expect to
obtain an improved value of E, and to calculate
phonon lifetimes.

The author has enjoyed discussing various
aspects of this work with N. S. Gillis, N. R.
Werthamer, W. J. Mullin, and L. H. Nosanow.
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agreement. However, the calculated phonon
energies differ significantly near the edge of
the Brillouin zone. These results also obtain
at other densities.

We feel that the theoretical approach outlined
here offers a unified method of treating both
highly anharmonic and slightly anharmonic sys-
tems by the expansion of the potential in gen-
eral three-dimensional orthogonal polynomials
or three-dimensional Hermite polynomials,
respectively. In addition, the latter expansion
has definite advantages over the conventional
Taylor series expansion, "although the math-
ematical techniques of II are required to per-
form it. In contrast with the theories of Refs.
6 and 7, one is provided here with a clear-cut

FIG. 2. Phonon dispersion curves in the [110]direc-
tion at a specific volume of 21.5 cc/mole. The solid
curves are results of this paper, the dashed curves
are computed from the theory of Ref. 7.
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Calculating the band structure of semiconduc-
tors crystallizing in the diamond or ZnS struc-
ture is a very interesting but also a difficult
problem. Self-consistent calculations as per-
formed by Herman' are extensive and until now

only completed for Ge, Si, and grey tin (a per-
turbation calculation had to be added a poste-
riori). Results obtained with the aid of the pseu-
dopotential-interpolation scheme have been
published for 14 semiconductors by Cohen and

Bergstresser' (hereafter referred to as CB).
But in spite of the striking success of this pa-
per, the method is not fully satisfactory, since
it is an empirical one and depends on a great
deal of experimental data which must be inter-
preted properly.

To adopt a middle course-not as extensive
as orthogonalized-plane-wave self-consisten-
cy but starting nearly from first principles —we
undertook an application of the Green's func-


