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An expression is derived in this communica-
tion for the force which is applied to a straight
vortex' line in a superconductor by the combi-
nation of electrical currents'" and a thermal
gradient. ' We assume that the inertia associ-
ated with motion of the vortex may be neglect-
ed; so we identify force with a vector such that
the energy dissipated by the motion is the sca-
lar product of this vector and the displacement.
The derivation is thermodynami. c, since we
are ignorant of the mechanisms through which
the force is applied.

Consider a sample of type-II superconductor
having translational symmetry in some direc-
tion. This symmetry applies not only to the
surface of the sample but also to the distribu-
tions within the sample of temperature, of al-
loy composition, and of the density and effec-
tiveness of pinning' sites for vortices. We fur-
ther specify that the direction of the magnetic
field outside the superconductor is everywhere
that of the sample symmetry. Thus the sam-
ple may be within an infinitely long solenoid,
which contributes magnetic field Hsol Thus
also, electrical currents may be borne by the
superconductor provided that the current den-

sity, both within the superconductor and in the
external circuits, possesses the translational
symmetry and has no component in the direc-
tion of symmetry. Figure 1 shows the cross
section of such a sample and external circuits.

The temperature distribution within the super-
conductor is presumed to be fixed by an artifice:
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FIG. 1. Cross section of translationally symmetric
specimen. A vortex is formed at K and moves into the
hole at L. The dashed curve follows a flow line of elec-
trical current in an attached circuit and is completed
by an arbitrary contour within the superconductor.

Ducts run through the sample in the direction
of symmetry. Each duct is maintained at its
specified temperature by a fluid pumped along it.

We shall consider energy and entropy rela-
tions which apply to the following representa-
tive process. A vortex parallel to the direc-
tion of symmetry is formed at the surface of
the sample along some line K. Another vortex
is discharged into a hole which runs in the di-
rection of symmetry and is located at L. The
cross-sectional area of the hole is sufficient
so that we may neglect the quantum restriction
on the magnetic flux trapped within it. But the
hole is assumed to be small enough so that the
differences in temperature between points on
its surface are negligible. As still another part
of the same process, we specify that vortices
at positions between K and J move as follows.
A surface composed of lines in the direction
of symmetry is selected so that it connects K
and L, . The trace of this surface on a cross
section of the sample is indicated in Fig. 1.
Distance from K along the trace is denoted by

The vortices which are less distant from
this surface than about one-half the typical spac-
ing between vortices form a sequential array
which extends from K to L, . We specify that
each vortex in this array moves to the position
originally occupied by its neighbor in the direc-
tion toward L. The net results of the whole
process are a change in the strength of the su-
percurrent sheath on the surface of the hole,
possibly a change in the heat content of the ther-
mostating fluids in the ducts near the array
of moving vortices, and possibly a change in
the energy stored in the external sources of
electrical energy.

We assume that the entropy produced within
the sample is the sum of two terms. One of
these, contributed by ordinary processes of
thermal conduction, is independent' of the mo-
tion of vortices. The other is independent of
V'T and can be attributed to vortex motion. We
denote by 5S/5x the entropy produced per unit

length per unit distance traveled by a single
vortex. The magnitude of this quantity depends
on velocity and on attributes of the sample,
including pinning.

In general, when a vortex is added to a super-
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We now consider another sample, similar to
the first except that the hole into which a, vor-
tex is expelled is situated a bit farther from
Kso that a few more vortices are involved in
the sequential progression. An equation sim-
ilar to Eq. (1) applies to the second sample,
and comparing it with Eq. (1) we obtain

0=(5q/«)/T+5S/5x dS /dx, - (2)

where we have introduced Sd ———Q„t/T to repre-
sent the entropy per unit length delivered' by
a vortex to the surface at which the vortex is
destroyed. At a place where there is no hole
nor surface, Sd is defined as the entropy per
unit length which a vortex would deliver if a
hole existed there.

Equation (2) indicates that a vortex may make
a reversible contribution as well as a dissipa-
tive contribution to the heat in a region through
which it passes. If vortices flow as an array,
which has density n~ and velocity v~, the heat
which they deposit reversibly' per unit time
per unit volume within the superconductor is,

conductor of fixed temperature distribution,
the density of vortices may be affected through-
out the sample. But the process of sequential
vortex progression described above involves
no net change in number nor distribution of vor-
tices. Accordingly, we assume that its ther-
mal effects are confined to the vicinity of that
surface which is followed by the sequential dis-
plaeements. Though we have thus restricted
the discussion to local effects, we must distin-
guish between (1) the heat which a superconduc-
tor absorbs locally when and where a vortex
is formed and (2) the net heat absorbed in the
region of formation if a vortex is both formed
and then moved to another region. The latter
heat, per unit length of vortex, we denote by

Q„&. (We assume that the formation and destruc-
tion of vortices are not dissipative' when per-
formed at the rates typical of vortex-flow ex-
periments. ) A vortex moving within a super-
conductor of fixed temperature distribution may
cause it to exchange heat with the thermostat-
ting device. We denote by 5q/« the heat thus

absorbed per unit length per unit distance trav-
eled.

The sequential vortex progression leaves
the entropy of the sample unchanged:

from Eq. (2), T-n~v~ VSd .This may also be
written as —(cT/C~)((E) &(8)/(&)) ~ VSd, where
c is the velocity of light, 4~ is the fluxoid strength
of each vortex, (E) is the electric field smoothed
over the distance of separation between vortic-
es, and (B) is magnetic field similarly smoothed.
The second expression is obtained by use of
the relation' ~" c(E) = -v~ x(B).

We denote by Bg the strength of magnetic
induction within the hole at L when in equilib-
rium with the vortices in the surrounding su-
perconductor. At a place where there is no

hole, Bg is defined as the strength which would

exist if there were a hole. The sequential vor-
tex progression increases the energy of the
combination of superconductor and magnetic
field by the amount Bg(L)~ C„/4m. Thus

B„(L)~ C /4~
V

=Q (ff)+f dx(&qi«) e, (L)+-W, (3)
L

where We is the energy input per unit length
from external electrical sources. It is ea.sy
to evaluate We if we specify that the impedane-
es of the external circuits are such that the
current distribution outside the sample is con-
stant during the motion of the vortices. We
calculate the energy supplied by the external
circuit to each flow line of current. If the flow
line passes through the superconductor, we
select a contour within the superconductor to
connect the point of entry with the point of ex-
it. We need merely to take care that this con-
tour lie deep within the superconductor and not
intersect the surface which is swept out by the
sequentially progressing vortices. In Fig. 1

the dashed loop indicates such an external flow
line and associated internal contour. Distance
along the loop is denoted by /. If we integrate
on any loop over the time interval during which
the vortex progressionoccurs, fdt fdl E is ei-
ther —@~/c or 0, depending on whether the hole
at L is encircled by the loop. The instantaneous
electric field is identically 0 within the super-
conductor on a contour such as we have spec-
ified. Therefore, fdt gdl- E i—s the energy sup-
plied by the external circuit per unit of current
on any flow line, whether the flow line is itself
a loop or is completed as specified above. The
current on those flow lines for which the loops
encircle the hole at L is just the current which
encircles a line lying outside the superconduc-
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tor close to and parallel to the line K. It fol-
lows that

(4)

where H(K) is the magnetic field just outside
the superconductor at K.

Equations (3) and (4) together indicate that
Bg just inside the superconductor is equal to
H just outside. The boundary values of Bg are
therefore specified by the external current dis-
tribution.

Again we consider a sample in which the hole
is a bit farther from K. By comparing Eq. (3)
with the similar equation for the second sam-
ple, we obtain

d- - 6q d—(B ~ C)=———e.
471 dx 6 v 5x dx nl

(5)

We assume that any kinetic energy associated
with the motion of the vortices may be neglect-
ed. The energy dissipated per unit distance
traveled must therefore be the component of
force in the direction of travel. Since the di-
rection of motion j.s subject to manipulation, ' "
we generalize to

F=-(I/4~)v(B c )-s vr,
v d

where F is the force on the vortex per unit length.
If a, superconductor is maintained at a fixed

uniform temperature, is in a constant applied
field H(r), and has no electrical connections
to external circuits, then it may be shown that
the integral fd'r(B-H)'/Sm taken over all space
is the magnetic component of the free energy
which is minimized at equilibrium. We there-
fore regard (B&-H I) C /4v as the "chemi-
cal potential" per unit length of a vortex, re-
calling that B~ is by definition in equilibrium
with vortices in the superconducting material
surrounding the hole. Equation (7) shows that
in a state in which F =0, a gradient of temper-
ature supports a gradient of this "chemical po-
tential" in proportion to the entropy of tr ans-
port. In this respect a superconducting pipe
with a radial temperature gradient in its wall
is closely analogous to a permeable membrane
between containers of gas at different temper-
atures.

We can now describe the formal framework

Eliminating 5q/5x between Eqs. (2) and (5) yields

5S & d — — dTr—=--—(B c )-s
5g 4m' 8 g deb

'

of the relations which govern the flow of straight
vortices. One equation obeyed by v and n

(except at surfaces of the superconducting ma-
terial) is that of continuity: an /st = —v ~ (n v ).
Another is the balance between dissipative drag
and the force described by Eq. (7). Measure-
ments' of drag indicate that it is the sum of
a (viscous)' term proportional to v and a, (pin-
ning) term independent of v~. The quantities
Bg and Sd, appearing in Eq. (7), each depend
on n in measurable fashion. (The relation
between Bl, and (B) is that between applied
H and (B) at equilibrium in a long, thin, elec-
trically isolated isothermal sample parallel
to H. ) The external current distribution deter-
mines the values of n~ at the surface of the
super conductor.

The quantity B~, defined above, is regard-
ed by some as the magnetic field inside the
sample. But we shall show that the quantity

so defined cannot be equivalent to any quanti-
ty H which is defined by geometric relationships
with its sources, which are electric currents
and magnetic materials (Any .H which appears
in expressions for energy transferred magnet-
ically must be definable in terms of sources. )
Suppose that two long cylindrical rods with con-
gruent cross sections are fabricated from type-
II superconducting alloys and are placed paral-
lel to a uniform applied Hsol in a liquid-heli-
um bath. Rod No. 1 is uniform in alloy compo-
sition but is heated internally (e.g. , by gamma
rays) so that a radial gradient of temperature
is maintained in it. In the equilibrium (i.e. ,
F =0) configuration of vortices, Bl, at the cen-
ter of this rod is less than Hsol, according
to Eq. (7). The smoothed field (B(r)) within
rod No. 1 is determined by the combination of
alloy composition, T(r), and Bg(r). Rod No. 2

is kept entirely at bath temperature. But we
specify that its alloy composition is graduat-
ed in whatever way is required so that (B(r))
everywhere in it, in the equilibrium configu-
ration of vortices, is congruent to (B(r)) in rod
No. 1. The fields H(r) in the two rods are con-
gruent" because all possible sources have been
specified so as to be congruent. But B~ at the
center of rod No. 2, being equal to Hs& l, is
different from Bg -at the center of rod No. 1.

The boundary conditions on Bg at the surface
of a superconductor are the same as those on
8 at the surface of a nonmagnetic normal con-
ductor. This analogy may be exploited by de-
fining j~ -=eV x Bl, /4m. The superconductor has
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no surface sheath of j~,' and the normal com-
ponent of jI, is continuous across the surface.
In these respects jg resembles the actual cur-
rent in a normal conductor and differs from
the actual smoothed current, (j)—:c& x(B)/4v,
in a superconductor. The "flux-flow"-resistiv-
ity, Ettingshausen, and Nernst coefficients
which have been reported3~4 for type-II super-
conductors are ratios in which the denomina-
tors are current densities inferred from lead
currents as though the samples were not super-
conducting. Such inferred current densities
are a generalization of jh applicable where f1~
lines are curved. In a transla. tionally symmet-
ric geometry,

-p(B ~ C )/4v =j xC /c.
h v h.
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