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The Slater model of the two-dimensional potassium dihydrogen phosphate crystal is
solved exactly under the additional assumption that the dipoles are excluded from point-
ing along one direction of the crystal axis. The Curie temperature T, is not affected by
this additional assumption but the phase change becomes a second-order transition.
Complete polarization occurs below T, with specific heat "'(T—Tc)—’/2 near and above

the Curie point.

This Letter reports a model of the ferroelec-
tric phase transition which is exactly soluble
in the two-dimensional case. We fix our atten-
tion on the potassium dihydrogen phosphate
(KDP) crystal, KH,PO,, which undergoes a sec-
ond-order phase transition at 123°K. Slater!
was the first to point out the important role
played by the hydrogen atoms in the mechanism
of this phase transition. The detailed structure
of the KDP crystal proposed by him allows six
possible configurations for the four hydrogen
atoms attached to each PO, group. This sim-
plified picture permits one to construct a well-
defined mathematical model for the KDP crys-
tal by associating arrows to the lattice bonds
and energies to the lattice sites.? However,
in spite of the simplicity of the statement of
this problem, rigorous approaches to the so-
lution have been lacking. Most of the previous

treatments based on the Slater model and its
modifications have been essentially mean-field
methods yielding a first-order phase transi-
tion,®"% while the experimentally observed tran-
sition is a second-order one. The best statis-
tical mechanical treatment to date has been
given by Nagle,® who obtained both the high and
low temperature expansions of the partition
function and located the Curie point. These
expansions, however, yield no information about
the behavior of the specific heat, which is of
considerable theoretical interest. It therefore
seems desirable to have an exactly soluble
model which can exhibit the character of the
discontinuity, while serving as a model for
testing the validity of other approximation pro-
cedures.

We first describe the Slater KDP model.!s*
Consider a diamond-type lattice (four nearest
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neighbors to each site) with directed arrows
attached to all the lattice bonds. The rule is
that there are always two arrows pointing to-
ward and two arrows pointing away from a giv-
en lattice site. Then there are altogether six
possible arrow configurations that can be as-
sociated to a site. A zero site energy is asso-
ciated with two of the six configurations and
an energy €>0 with the remaining four (see
Fig. 1). Each distinct way of associating ar-
rows to the lattice as a whole will be called

a state of the lattice. The energy of a given
state is simply n(€)e, where n(€) is the num-
ber of sites with energy €. The partition func-
tion is now given by

z- %

all states

e—n(e)e/kT. 1)

The model we propose is the same as above

-2¢/kT
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E=0, T<T.=¢€/kIn2;
:N(2€/n)cos-1(%e€/kT), T>Tg;
C=0, T<T,;
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Clearly a phase change occurs at T, = €/k 1n2
with ¢~ (I'=T,)~"? near and above the Curie
point, The location of the Curie temperature
T is in agreement with previous results on
the Slater KDP model.'”® There is also total
polarization below 7T,: All sites take the zero-
energy configuration to form an ordered state
in which all dipoles point in the same direction.
It is interesting to note that E is continuous
at T=T as is the case for the three-dimen-
sional KDP crystal (previous theoretical dis-

(1) (2) (3)

—2¢/kT
e

except that we impose the further restriction
that only one of the zero-energy configurations
is allowed. Physically this corresponds to the
assumption that the dipoles are excluded from
pointing along one direction of the crystal ax-
is.! Nevertheless, this provides us with a mod-
el which can now be treated with mathematical
rigor.®

In this note we shall only write down the fi-
nal results and give a brief description of the
intermediate steps, while reserving the details,
together with some interesting observations
on the dimer method, for another communica-
tion. The partition function of our model is
still given by (1), although the summation is
now taken over a more restricted set of states.
For an infinite rectangular lattice wrapped around
a torus, the logarithm of the partition function,
the energy, and the specific heat are given,
respectively, by (N=number of lattice sites)

e/k

cos(6=¢p) =2¢ T(cose+cos<p)]; (2)

cussions have always led to a first-order phase
transtion).

Our method of attacking the problem consists
of first converting the problem of counting the
arrow configurations into a problem of draw-
ing restricted closed polygons on the crystal
lattice. The latter is equivalent to a dimer
problem” and hence the evaluation of a Pfaffian.®

Let us take any state of the crystal lattice
L as a standard state. Then, as compared with
this standard one, an arbitrary state of L has
either 0, 2, or 4 arrows reversed at each site.
If we denote each of these reversed arrows
by a bond connecting the two corresponding
sites, then an arbitrary state of L is now trans-
formed into a bond diagram made of closed
polygons. The original restrictions on the ar-

(4) (5) (6)
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FIG. 1. Site energies of the six allowed site configurations for the Slater KDP model in two dimensions.
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row configurations at each site now impose the and the arrows on the terminal lattice L& prop-

restriction that there are only five possible erly attached,’®>!! the evaluation of the parti-

bond configurations at each site. tion function (1) is straightforward” and yields
Next we expand the lattice L into a terminal N .om o

(dimer) lattice LA by replacing each site of lim InZ 2—8—7?2—f def dolnD,

L by a “city” of internally connected points.® N—= o 0 0

The one-to-one correspondence between the
configurations of closed polygons on L and the
dimer configurations on LA (provided that each

where D is the determinant given by

0 0 0 U-1 =-e=if -1

city contains an even number of points) is well e
known.”'® We need only to choose the cities 0 0 O ~1 -U -1
and the weights associated with their internal 0 0 0 ——i? y_v2 _yu
bonds properly, to take care of the restrictions D= .
on the bond configurations. 1-U 1 ¥ 0 0 0

It is found that this trick can be accomplished el U v2_U 0 0 0
by the dimer city shown in Fig. 2, where the
standard state has been taken to have the con- 11 U 0 0 0

figuration (1) of Fig. 1 at all sites.
Once the dimer cities are properly drawn

with U=e=¢/kT substitution now leads to Eq. (2).
The author is indebted to Professor Elliott
Lieb for a valuable conversation.
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