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thermally induced stresses exist suggest that
stress and strain may be instrumental in pro-
ducing the observed interface charge distribu-
tion.

The authors are indebted to A. Schoeler,
V. Klints, and V. Sapione for their valuable
assistance in construction of the experimental
apparatus and in carrying out the measurements.
Helpful discussions with Dr. F. du Pré and
Dr. E. S. Rittner are gratefully acknowledged.
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POLARIZABILITY OF A TWO-DIMENSIONAL ELECTRON GAS

Frank Stern
IBM Watson Research Center, Yorktown Heights, New York
(Received 13 February 1967)

The response of a two-dimensional electron gas to a longitudinal electric field of arbi-
trary wave vector and frequency is calculated in the self-consistent-field approximation.
The results are used to find the asymptotic screened Coulomb potential and the plasmon
dispersion for a plane of electrons imbedded in a three-dimensional dielectric.

There has been increased interest in the the-
ory of two-dimensional systems recently, part-
ly because of the relevance of such theories
to the properties of thin films and surfaces.

A particularly interesting example is the »n-
type inversion layer of a Si-SiO,-metal struc-
ture, whose density of states has been shown

to have the behavior expected of a two-dimen-
sional electron gas,' and whose carrier concen-
tration can be varied by at least two orders

of magnitude simply by changing the voltage
across the oxide layer.

We present results for the response of a two-
dimensional electron gas to longitudinal elec-
tric fields of arbitrary wave vector  and fre-
quency w, the two-dimensional analog of the
longitudinal Lindhard? dielectric constant.
From this the screening behavior of the sys-
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tem, the plasmon frequency as a function of
wave vector, and the energy loss of moving
charged particles can be calculated. We give
as examples the asymptotic expression for the
potential due to an external charge, and the
approximate solution of the plasmon dispersion
equation.

A longitudinal electric field E(q, w) =E, exp(iq- T
—iwt) acting on a two-dimensional electron gas
will induce a polarization

(G, w) = x(d, @) E(q, )6(z), (1)

where q has only x and y components, qxE,
=0, and the electrons are in the plane z =0.

The self-consistent-field treatment of the
response of the electron gas gives the same
expression for the polarizability y as in the
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three-dimensional case®;
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where the sum is taken over all one-electron
states; Ej; is their energy, f, is the Fermi-
Dirac occupation probability, 2 is the normal-
ization area, and ¢ = [q|. We use Gaussian
units.

If we evaluate (2) at absolute zero for a two-
dimensional electron gas with energy levels
Ef;=r*k*/2m*,* Fermi wave vector kp, and
Fermi velocity vp =hkp/m*, and introduce
the usual® dimensionless quantities z =q/2kF
(not to be confused with the coordinate z per-
pendicular to the electron plane) and u =w/qu,
we find that the real and imaginary parts of
x are

X1 = G{22 —C _[(z ~u)?~1]2~C [(z +u)?~1]"2}, (3a)
X2 =0/w=G{D_[1-(z ~u)*]"?

=D [1-(z +u)?]V?}, (3b)

G=Ne?/m *zqvaz, (3¢c)

Ci=(z+u)/lz+ul and D, =0 for lz+ul>1, (3d)
C,=0and D, =1 for |z+u|<1, (3e)

where N is the number of electrons per unit
area and o(q, w) is the conductivity.

The polarizability (3) satisfies the dispersion
relations, and at high frequencies its real part
is x, ~-Ne®’/m*w?®. The two-dimensional con-
ductivity, therefore,® obeys the sum rule®
[P0(8, w)dw =TNe?/2m*. (4)

0

What we have found so far is the polarization
of the electron-gas plane in the presence of
a total field E in the plane. We still need a
constitutive relation between the induced field
and the total field to calculate a dielectric con-
stant. This relation, and, therefore, the di-
electric constant itself, depends not only on
the properties of the electron gas, but also

on its surroundings. We assume here that the
electron plane is surrounded by a medium with
dielectric constant kp. Then the induced field
associated with the polarization (1) is propor-
tional to exp(iq- F-iwt~B 1z |), where = (qz—/{b
Xw?/c?)'?. (If B is complex, the root with neg-
ative imaginary part is to be taken.) The in-
duced field in the plane z =0 is found to be

E, 4@ @) =-218xq 0)EG w)/ky. ()

We define the dielectric constant for this ge-
ometry by the relation k/kp =(E~E;,q)/E, and
find

k(q, w) = K+ 2mBx(g, w)- (6)

The dependence of the plasmon frequency
w, on wave vector is found from (6) by solving
the equation (3, wp) =0. If k is dispersionless,
and »>1, we find

q2=waP2/c2+(wp2/a)2, (7)

where a =27Ne?/m*«y,. For small values of

q, the first term on the right dominates, and
the phase velocity wp/q approaches the phase
velocity of a propagating wave in the dielectric,
but is always smaller. Thus the plasmons can-
not radiate.® For larger values of ¢q, the first
term on the right becomes negligible, and the
plasma frequency rises like g*/2. For still
larger g, the condition » >1 used to derive

(7) becomes invalid. The leading terms in the
expansion of wpz in powers of ¢ are then found
to be

wp2~aq+3q2vF2/4. (8)

Another result which can be obtained easily
from the dielectric constant (6) is the screen-
ing of a static point charge. If a charge Ze
is located at x =y =0, |z|=d, the potential in
the electron plane is

o(r)=ze |, k™4(q, 0) exp(~qd)Io(gr)dg,  (9)

where J; is the Bessel function of order zero,
and 7 = (x2+y?)¥2. The static dielectric constant
is

k(g, 0) = Kb(l +s/q), q< 2% s (10a)
i1+ (s /M~[1~(k V], > 2 (10
s =4mNe?/m *Kvaz = 2nv/’a * (10¢)
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where n,, is the degeneracy factor defined in
Ref. 4, and a*=kph?/m*e? is the effective Bohr
radius.

The long-wavelength approximation (10a) to
the static dielectric constant leads to the same
result as does the Thomas-Fermi approach
to the screening,” with a potential whose asymp-
totic form at large » is ¢ ~Zes(1 +sd)/kp(s¥)."
Because of the discontinuity in d«(g, 0)/dq at
g =2kp, we must add to this an oscillatory term
which can be evaluated from (9) and (10) using
a theorem of Lighthill.® The oscillatory term
dominates at large », and has the asymptotic
form

2 -
Zes 4kF exp( 2de)

or)~——— 2
Kb (ZkF +8)

sin¢ 8Y2s cos(£-m/4)

X £ +ﬂ1/2(2kF+s)€5/z+”' s

(11)

where ¢ =2kgr. The leading term in (11) has
the same dependence on » as does the result

of Roth, Zeiger, and Kaplan® for a three-dimen-
sional semiconductor with cylindrical energy
bands.

The screened Coulomb potential due to ex-
ternal charges is discussed more fully in a
forthcoming paper,” where it is used to calcu-
late bound states and ionized impurity scatter-
ing of the electrons confined to the plane.

I am indebted to R. A. Ferrell, W. E. Howard,

G.J. Lasher, M. I. Nathan, and T. D. Schultz
for discussions and comments.
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Phonon-dispersion relations for the symmetric [100], [110], and [111] branches in fcc
krypton have been measured by triple-axis neutron spectrometry. Measurements were
carried out at 79°K on a single-crystal sample grown from the melt at a pressure of 2.31

Kkbar.

The phonon-dispersion relations in fcc kryp-
ton have been measured on the triple-axis spec-
trometer at the Brookhaven high-flux-beam
reactor. The single crystal used for the ex-
periment was grown from the melt at a pres-
sure of 2.31 kbar in an aluminum -alloy pres -
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sure cell incorporating a nucleation tip at the
bottom. The cell was cylindrically shaped with
an inside diameter of 12 mm and an outside
diameter of 47 mm. The growth process was
carried out in a temperature -controlled Dewar
with heaters appropriately placed so as to pre-



