20 In order to satisfy Eq. (10) and the other requirements without getting an I=2 piece, it is necessary to add an additional vector field Ψ_{μ} which is a scalar with respect to the entire SU(3) \otimes SU(3) group. A suitable current, which contains only I=0, 1, would then be $\partial_{\nu}[\Psi_{\nu}(\psi_{\mu}{}^{3}+3^{-1/2}\psi_{\mu}{}^{8}-6^{-1/2}\psi_{\mu}{}^{0})-(\mu \longrightarrow \nu)]$.

²¹S. Coleman and S. L. Glashow, Phys. Rev. Letters <u>6</u>, 423 (1961).

²²J. Bernstein, G. Feinberg, and T. D. Lee, Ref. 13; N. Cabibbo, Phys. Rev. Letters 14, 965 (1965).

²³C. Barnes et al., in Proceedings of the Gatlinburg International Conference on Nuclear Physics, 12-17 September 1966 (unpublished).

²⁴G. T. Garvey, private communication. I wish to

thank Professor Garvey for a discussion of the results on the nuclear isobaric-mass formula.

 25 D. H. Wilkinson, Phys. Letters <u>12</u>, 348 (1964). 26 S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento <u>40</u>, 1171 (1965). We use the notation of S. L. Adler and F. J. Gilman, Phys. Rev. <u>152</u>, 1460 (1966).

²⁷The matrix element $\overline{u}(p+k)(p+k+p)_{\mu}\gamma_5 u(p)$ has C=-1, while $\overline{u}(p+k)(k^2\gamma_{\mu}\gamma_5-ik_{\mu}\gamma_5 2M_N)u(p)\epsilon_{\mu}$ vanishes at $k^2=0$, since $k \circ \epsilon=0$.

 28 N. Cabibbo and L. A. Radicati, Phys. Letters $\underline{19}$, 697 (1966).

²⁹S. D. Drell and A. C. Hearn, Phys. Rev. Letters <u>16</u>, 908 (1966).

KAON DECAY AND PION PHASE SHIFTS

S. L. Glashow*

Lyman Laboratory, Harvard University, Cambridge, Massachusetts (Received 18 November 1966)

We consider decays of neutral kaons under the following hypotheses:

- (a) We assume that the short-lived and long-lived neutral kaons are each characterized by a unique complex mass; and that the conventional formalism, with *TCP* invariance, applies.
- (b) $\Gamma(K_S \to 3\pi) \ll \Gamma(K_L \to 3\pi)$. This follows² from the approximate validity of the $\Delta I = \frac{1}{2}$ rule, and the known rates for $K_L \to 3\pi$ and $K^+ \to 3\pi$.
- (c) There are no $\Delta S = -\Delta Q$ currents. (The weaker statement that the $\Delta S = \pm \Delta Q$ form factors are relatively real suffices.)
- (d) $K_S \rightarrow 2\pi$ satisfies an approximate $\Delta I = \frac{1}{2}$ rule. Thus, we exclude the possibility of a mixture of $\Delta I = \frac{1}{2}$ and $\Delta I = \frac{3}{2}$ giving the $\Delta I = \frac{1}{2}$ branching ratio, but the wrong relative phase.
- (e) We must exclude the possibility that $\cot(\delta_0 \delta_2) = 2\Delta m/\Gamma_S$. We discuss separately what happens when this relation is nearly satisfied. δ_I denotes the pion phase shift at the kaon mass for I=0,2; $\Delta m=m_L-m_S$, and henceforth we use the notation $\tan \varphi_w = 2\Delta m/\Gamma_S \approx \tan 40^\circ$.

Under these hypotheses, we obtain a new relation among the four measurable quantities φ_W , φ , δ , and R. Here φ denotes the phase of the amplitude for $K_L + \pi^+ + \pi^-$ relative to the amplitude for $K_S + \pi^+ + \pi^-$; δ denotes $\delta_0 - \delta_2$; R is the branching ratio for $K_L + 2\pi$, $R = \Gamma(K_L + \pi^0 + \pi^0)/\Gamma(K_L + \pi^+ + \pi^-)$. The relation is

$$2R - 1 = 3\sin^2(\varphi - \varphi_w)[1 + 3\tan^2(\varphi_w + \delta)]$$
$$-3\sin^2(\varphi - \varphi_w)\tan(\varphi_w + \delta). \tag{1}$$

In principle, the experimental evaluation of R, φ , and φ_{w} determines the difference of the pion phase shifts, without the necessity of measuring the phase φ_{0} of the $K_{L} - 2\pi^{0}$ amplitude relative to the $K_{S} - 2\pi^{0}$ amplitude. Of course, an analogous relation holds for φ_{0} ,

$$\frac{1}{2}R^{-1} - 1 = 3\sin^{2}(\varphi_{0} - \varphi_{w})\left[\frac{3}{4}\tan^{2}(\varphi_{w} + \delta) - \frac{1}{4}\right] - \frac{3}{2}\sin^{2}(\varphi_{0} - \varphi_{w})\tan(\varphi_{w} + \delta). \tag{2}$$

Note that two values of φ give the same value of R. For $R=\frac{1}{2}$, $\varphi=\varphi_{\mathcal{W}}$ corresponds to the $\Delta I=\frac{1}{2}$ rule for K_L , while the other solution different from $\varphi_{\mathcal{W}}$ corresponds to a mixture of $\Delta I=\frac{1}{2}$ and $\Delta I=\frac{3}{2}$ giving the $\Delta I=\frac{1}{2}$ branching ratio but the wrong phase. Another interesting case is $\varphi=\pm\frac{1}{2}\pi-\delta$, which occurs in Bowen's model of CP-invariance violation.³ It is clear from Eq. (1) that this gives R=2, the pure $\Delta I=\frac{3}{2}$ result.

Derivation of Eq. (1).—Denote the matrix element for the decay of K^0 into two pions with I=0 and 2 by $A\exp i(\delta_0+\alpha)$ and $B\exp i(\delta_2+\beta)$, respectively, where A and B are real and α and β are CP-nonconservation parameters with $-\frac{1}{2}\pi \leqslant \alpha$, $\beta \leqslant \frac{1}{2}\pi$. From TCP invariance, the corresponding matrix elements for \overline{K}^0 decay are obtained from these by replacing α by $-\alpha$ and β by $-\beta$. The physical particles are given by

$$K_{L} = \{K^{0} - \overline{K}^{0} + \epsilon (K^{0} + \overline{K}^{0})\} [2(1 + \epsilon^{2})]^{-1/2},$$

$$K_{C} = \{K^{0} + \overline{K}^{0} + \epsilon (K^{0} - \overline{K}^{0})\} [2(1 + \epsilon^{2})]^{-1/2},$$
(3)

where ϵ is taken to be real without loss of generality, and is known to be small in magnitude ($|\epsilon| \le 10^{-2}$) with this choice of convention. The matrix elements for the decays of physical particles are

$$M(K_S - \pi^+ + \pi^-) = \sqrt{2}A(\cos\alpha + i\epsilon\sin\alpha)e^{i\delta_0} + B(\cos\beta + i\epsilon\sin\beta)e^{i\delta_2},$$

$$M(K_S - \pi^0 + \pi^0) = A(\cos\alpha + i\epsilon\sin\alpha)e^{i\delta_0} - \sqrt{2}B(\cos\beta + i\epsilon\sin\beta)e^{i\delta_2},$$

$$M(K_L - \pi^+ + \pi^-) = \sqrt{2}A(i\sin\alpha + \epsilon\cos\alpha)e^{i\delta_0} + B(i\sin\beta + \epsilon\cos\beta)e^{i\delta_2}.$$

$$M(K_L - \pi^0 + \pi^0) = A(i\sin\alpha + \epsilon\cos\alpha)e^{i\delta_0} - \sqrt{2}B(i\sin\beta + \epsilon\cos\beta)e^{i\delta_2},$$

$$(4)$$

in which we have dropped a common factor of $(1+\epsilon^2)^{1/2}$. We approximate these expressions by making use of hypothesis (d), which requires that $|B\cos\beta|\ll |A|$, and of the fact that $\Gamma(K_L+2\pi)\ll\Gamma(K_S+2\pi)$, which requires that $|\epsilon|\ll 1$ and $|\alpha|\ll 1$. We obtain

$$M(K_S - \pi^+ + \pi^-) \approx \sqrt{2} A e^{i\delta_0},$$

$$M(K_S - \pi^0 + \pi^0) \approx A e^{i\delta_0},$$

$$M(K_L \to \pi^+ + \pi^-) \approx \sqrt{2} A (\epsilon + i\alpha) e^{i\delta_0} + iB \sin\beta e^{i\delta_2},$$

$$M(K_L - \pi^0 + \pi^0) \approx A(\epsilon + i\alpha)e^{i\delta_0} - \sqrt{2}iB \sin\beta e^{i\delta_2}. \quad (5)$$

From unitarity, the following sum rule is easily deduced, 4

$$\epsilon (\Gamma_S + i2\Delta m) = \sum_n M(K_L - n)M*(K_S - n), \qquad (6)$$

where $M(KL,S\to n)$ is the matrix element for the decay into channel n, and the sum extends over all open channels and includes phase space. Provided that $\epsilon \neq 0$, we may use use Eq. (6) to determine the phase of the right-hand side. (Bowen³ has discussed the case of $\epsilon = 0$. He obtains, with the above hypotheses, R = 2 and $\varphi = \pm \frac{1}{2}\pi - \delta$.) Because of our hypotheses (b) and (c), only the I = 0, 2 two-pion channels contribute significantly to the right-hand side of Eq. (6). We obtain

$$\tan \varphi_w = \alpha/\epsilon + \lambda B \sin \beta/A\epsilon, \qquad (7)$$

where $\lambda = B \cos\beta/A$ is known to be small from hypothesis (d). It must be included in Eq. (7) because of the possibility that $B \sin\beta \gg A\epsilon$. Defining $a = \alpha/\epsilon$, and $b = 2^{-1/2}B \sin\beta/A\epsilon$, we may write for the relative phase φ and the branch-

ing ratio R, from Eq. (5),

$$2R = \left| \frac{(1+ia)e^{i\delta} - 2ib}{(1+ia)e^{i\delta} + ib} \right|^2, \tag{8}$$

$$\varphi = \operatorname{Arg}[(1+ia) + ibe^{-i\delta}], \tag{9}$$

$$\varphi_0 = \operatorname{Arg}[(1+ia) - 2ibe^{-i\delta}]. \tag{10}$$

Evidently, $\varphi=\varphi_0=\varphi_W$ and $R=\frac{1}{2}$ if the $\Delta I=\frac{1}{2}$ rule describes both K_S and K_L . Equations (7) and (9) may be solved for a and b, so that Eq. (8) becomes an expression for R in terms of φ , φ_W , δ , and λ ,

$$\begin{split} 2R &= 1 - M \sin 2(\varphi - \varphi_w) \tan(\varphi_w + \delta) \\ &+ \sin^2(\varphi - \varphi_w) \left\{ M^2 - 2M + M^2 \tan^2(\varphi_w + \delta) \right\}, \end{split} \tag{11}$$

where

$$M = 3 \left\{ 1 + \lambda \left(\cos \delta - \tan \varphi_{uv} \sin \delta - \lambda \right)^{-1} \right\}. \tag{12}$$

We may set $M \approx 3$, thus obtaining Eq. (1), provided that

$$|\cos(\varphi_w + \delta)| \gg 1/30 \ge \lambda \cos\varphi_w$$
.

Equation (1) is approximately valid if $\varphi_w + \delta$ differs from $\pm \frac{1}{2}\pi$ by at least several degrees. If, on the other hand, $\cos(\varphi_w + \delta)$ is small compared with 1, Eq. (11) takes the approximate form

$$2R = 1 - 2\chi + \chi^2, \tag{13}$$

where $\chi \approx 3(\varphi - \varphi_w)[\cos(\varphi_w + \delta) - \lambda \cos\varphi_w]^{-1}$. Evidently, any non-negative value of R may be attained; and R is an exceedingly sensitive function of $\varphi - \varphi_w$. The case of small $\cos(\varphi_w + \delta)$ is not without interest in view of a recent model of Truong.⁵ He notes that if $K - 2\pi$ and

the kaon-mass splitting are both dominated by an s-wave, I=0, pion-pion resonance, somewhat higher than the kaon mass to ensure $m_L > m_S$, then the relation $\cos(\varphi_w + \delta) = 0$ must be satisfied. For small δ_2 , this is precisely the exceptional limit we have just examined.

Comparison with experiment. – Presently available experimental data permit us to determine $\delta_0 - \delta_2$ approximately. Inserting into Eq. (1) the values of $R = 2.9 \pm 0.6$ and $\varphi = 0.60 \pm 0.23$, we obtain the inequality

$$10^{\circ} \le \delta_0 - \delta_2 \le 60^{\circ}$$
.

This result is compatible with other determinations of the pion phase shifts at 500 MeV.⁸

We thank V. Teplitz for his help, as well as N. Cabibbo and S. Weinberg for interesting discussions.

*Work supported in part by the U.S. Office of Naval Research under Contract No. Nonr-1866(55).

¹E.g., T. T. Wu and C. N. Yang, Phys. Rev. Letters <u>13</u>, 380 (1964).

²N. Cabibbo, in <u>Symmetries in Elementary Particle Physics</u>, edited by A. Zichichi (Academic Press, Inc., New York, 1965), p. 285; M. K. Gaillard, Nuovo Cimento <u>35</u>, 1225 (1965).

³T. Bowen, Phys. Rev. Letters <u>16</u>, 112 (1966).

⁴E.g., J. Steinberger, in <u>Recent Developments in</u>
Particle Symmetry, edited by A. Zichichi (Academic Press, Inc., New York, 1966), p. 228.

⁵T. N. Truong, U. S. Atomic Energy Commission Report No. NYO-2262TA-134, 1966 (unpublished).

⁶J. W. Cronin, F. Kunz, W. S. Risk, and P. C. Wheeler, unpublished.

 7 C. Rubbia and J. Steinberger, Phys. Letters $\underline{23}$, 166 (1966).

 8 L. Jacobs and W. Selove, Phys. Rev. Letters <u>16</u>, 669 (1966); R. Birge <u>et al.</u>, Phys. Rev. <u>139</u>, B1600 (1965); L. W. Jones <u>et al.</u>, Phys. Letters <u>21</u>, 590 (1966). Our determination of δ_0 – δ_2 is necessarily undefined up to an additive integer multiple of 180°.

ERRATUM

SECONDARY PARTICLE YIELDS AT 0° FROM THE NEW STANFORD ELECTRON ACCELERATOR. A. Barna, J. Cox, F. Martin, M. L. Perl, T. H. Tan, W. T. Toner, T. F. Zipf, and E. H. Bellamy [Phys. Rev. Letters 18, 360 (1967)].

The following typographical errors appear: (1) In the last two paragraphs of the left-hand column of page 360, "state" is printed consistently for "stage." (2) An omission has been made on page 360. Beginning at 20 lines from the bottom of the right-hand column it should read "The $K/(\pi + \mu + e)$ and $p/(\pi + \mu + e)$ ratios were measured by varying the gas pressure in the Cherenkov counter. The proportion of muons in the beam was measured by the number of particles which penetrated the 1.6-m-thick iron absorber." (3) In Table I on page 361, and also in Ref. 6, "±3.8 mr" has been printed instead of "±3.9 mr." (4) In Ref. 7, "turn off" has been printed for "turned off."

MINIMUM ENERGY OF POSITRONS IN METALS. S. M. Kim, A. T. Stewart, and J. P. Carbotte [Phys. Rev. Letters 18, 385 (1967)].

The figures in this paper have been interchanged. The captions, however, are correct; only the drawings are transposed.

POSSIBLE CP-NONINVARIANT EFFECTS IN $\pi\pi\gamma$ DECAY OF CHARGED K MESONS. G. Costa and P. K. Kabir [Phys. Rev. Letters 18, 429 (1967)].

The function $I_{\rm int}(\omega)$ defined in Eqs. (9) and (10) is only one-half as large as $I_{\rm int}$ defined by Good; consequently, the correct value of C_1 in Eq. (11) should be $C_1 \simeq 0.65$.

The s-wave $\pi^+\pi^0$ phase shift δ_0 should be taken at the center-of-mass energy equal to the kaon mass M. The statement that δ_1 is the p-wave $\pi^+\pi^0$ phase shift becomes exact in the limit when rescattering corrections to the $\pi\pi\gamma$ final state may be neglected. The corrections in the $\pi\pi\gamma$ state are of relative order α and may be ignored; the corrections leading from $\pi\pi$ states to $\pi\pi\gamma$ states have been estimated by H. Chew, Nuovo Cimento 26, 1109 (1962), who finds that they are negligible for values of $|x_e|$ as large as those we are considering. One would be surprised if corrections from $3\pi - \pi + \pi + \gamma$, which only affect the phase of x_m , greatly exceeded those from $2\pi + \pi + \pi + \gamma$.

In Eq. (11), the denominator on the left-hand side should be $B^+ + B^-$.

We would like to thank J. S. Bell, R. H. Dalitz, A. T. Davies, C. Michael, and L. Wolfenstein for clarifying discussions.