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The unifying feature of the physical systems
to be discussed in this Letter is the existence
of a Hamiltonian of the form

where q is a canonical coordinate, p is its con-
jugate momentum, Q(t) is an arbitrary contin-
uous function of t, and q is a positive, real pa-
rameter. The original motivation for consid-
ering such systems was the desire to investi-
gate the nature of the magnetic-moment series
for a charged particle moving nonrelativisti-
cally in the relatively simple electromagnetic
field for which the scalar potential is 0 and the
vector potential is

where h(t) is a function of time, Bo is a constant
vector, and r is the position vector; with this
vector potential the magnetic field, B(t), is
given by h(t)B, . The equations of motion for
such a particle can be reduced to the equations
corresponding to the Hamiltonian of Eq. (1)
exactly, ' in which case Q(t) is ,'B(t), and e —is

the ratio of mass to charge.
If 0 is real, as it is in the charged-particle

problem, the classical system whose Hamil-
tonian is given by Eq. (1) becomes oscillatory
with arbitrarily large frequency as e tends to
0. Corresponding to this fact, there exists
an asymptotic series in positive powers of e,
the partial sums of which are adiabatic invari-
ants of the system; the leading term of the se-
ries is eH/Q In the char. ged-particle problem
this adiabatic invariant is the magnetic-moment
series. The results reported in this Letter
stem from an application of the asymptotic the-
ory of Kruskal' to the classical system repre-
sented by Eq. (1) with real Q. It has been pos-
sible to apply Kruskal's theory to this system
in closed form, and, as a consequence, to de-
rive an exact invariant, a special case of which
is the adiabatic invariant just mentioned. Al-
though 0 was originally assumed to be real,
the final results are valid for 0 complex. Al-
so, the exact invariant is a constant of the mo-
tion of the quantum system whose Hamiltonian

is given by Eq. (1).
First consider the classical system and take

0 to be real. In order to apply Kruskal's the-
ory it is necessary to write the equations of
motion as a first-order autonomous system
such that all of the solutions are periodic in
the independent variable in the limit g =0. This
can be achieved by introducing a new indepen-
dent variable s, defined by s =t/e, and treat-
ing I; formally as a dependent variable. The
system of equations thus obtained is

dq/ds =p,

dP/ds = -Q'(t)q,

dt/ds = e. (2)

Because t is now a dependent variable, this
system is autonomous. In the limit & =0, the
solution of the last equation is f = constant and,
therefore, the other two equations are just the
harmonic-oscillator equations with a constant
frequency. Since 0 is real, the dependent vari-
ables are all periodic in s with period 2m/Q(t)
in the limit & =0, and the system of equations
is in the form required by Kruskal's asymptot-
ic theory. The details of the application of the
theory will be given in a longer publication else-
where. Here we limit ourselves to a brief sum-
mary of the method.

A central feature of the Kruskal theory is
a transformation from the variables (q, p, t)
to so-called "nice variables" which we may
call (z„z,) and y. The nice variables are so
chosen that a two-parameter family of closed
curves in (q, p, t) space can be defined by the
conditions z, = constant and z, = constant. These
closed curves are called rings. The variable
y is an angle variable which we define in such
a way that it changes by 27t if any ring is tra-
versed once. The rings have the important
property that the family of rings is mapped
into itself if each ring is allowed to change with
s according to Eqs. (2). In the general theory
the transformation from the variables (q, p, t)
to the variables (z„z,) and y is defined as an
asymptotic series in positive powers of e, and
a prescription is given for determining the trans-
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formation order by order. However, in this
example it has proven possible to obtain the
transformation in explicit closed form in terms
of the variables q and P and a function p(t).
It is also possible to invert the transformation
explicitly.

For this problem it turns out that the rings
lie in planes given by t = constant. Therefore,
we may use the rings to define an exact invar-
ant, I, as the action integral

Carrying out the integration explicitly by ex-
pressing I as an integral from 0 to 2m over the
variable y, we obtain

I= ,'[p 'q'-+ (p-p ep q)']-,

where p is a function of t satisfying

Ep +Op —p

and the prime denotes differentiation with re-
spect to I;. The function p can be taken as any
particular solution of Eq. (5). Although 0 was
assumed to be real in the derivation, the quan-
tity I is an invariant even if 0 is complex. It
is easy to verify dI/dt =0 for the general case
of 0 complex by differentiating Eq. (4), using
Eqs. (2) to eliminate dq/dt and dp/dt, and us-
ing Eq. (5) to eliminate p".

It may appear that the problem of solving
the linear system of Eqs. (2) has merely been
replaced by the problem of solving the nonlin-
ear Eq. (5). However this is not the case. First-
ly, any one particular solution of Eq. (5) can
be used in the formula for I with all initial con-
ditions for Eqs. (2). For numerical work it
is of practical importance that only one partic-
ular solution for p need be found. Secondly,
we now have an exact invariant whose depen-
dence on the dynamical variables, q and P,
is explicit and simple. Thirdly, by virtue of
the fact that e' multiplies p' in Eq. (5), it is
straightforward to obtain a particular solution
for p as a series in positive powers of e'. If
0 is real and the leading term in the series
is taken to be 0 ' ', then the series solution
corresponds to the usual adiabatic-invariant
series. It is interesting to speculate whether
it is more useful in practice to calculate I with
the truncated series solution for p than with
the corresponding series expression for I trun-
cated at the same power of e. Fourthly, we
can also solve Eq. (5) to obtain p as a power
series in l/e in terms of integrals. Final-

ly, with the result expressed by Eqs. (4) and

(5), it is possible to understand the nature of
the adiabatic invariant more fully. Some pro-
gress along this line is contained in the follow-
ing general discussion of I and p.

To within a constant factor, the invariant I
given by Eq. (4) is the most general invariant
of the linear system whose Hamiltonian is giv-
en by Eq. (1) that is a homogeneous quadratic
form in q and p. This can be seen by writing
the most general such invariant in terms of
two linearly independent solutions, f(t) and g(t),
of the linear system. If we generalize I to

I=Z'[p 'q'+ (pp-ep q)'], - (4)

where A and B are arbitrary constants and the
constants n, y„and y2 are defined by

n =fg' gf', -
y~ =+1,

Because there are two arbitrary constants in
this formula for p, it is the general solution
of Eq. (5) expressed in terms of f and g. Us-
ing this formula we can construct p explicitly
for any 0 for which Eqs. (2) can be solved ex-
actly. By constructing p in this manner for
special cases, we can deduce that the series
expansion of p in positive powers of e' is at
least somet'mes convergent. For example,
if 0 =M " ",where b is a constant and
n is any integer, the series expansion is a poly-
nomial in e2, and therefore it is convergent
with an infinite radius of convergence.

Having found the explicit form of the invari-
ant defined by Kruskal, it is then possible to
define a canonical transformation in which the
new momentum is the invariant. Furthermore,
a generating function for this transformation
can also be found. If we denote the new coor-
dinate by Q, its conjugate momentum by P,
and the generating function by I', then the re-

511

where F. is an arbitrary constant, and compare
it with the general quadratic invariant expressed
in terms of f and g, then we can deduce that
the two invariants are identical if p is given
by

p =yi(e~) E2g + Z2f'
~A', B

A2B2 1/2 j /2

+2y. , -(e~)' fg2 g4
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suits can be written as

Q = t—an [p P/q ~pp']

I' = .[P —'q'+(pp ep-'q)']

Ii =-,'ep 'p'q'+ p 'q(2P p—'q')'/'

~I'sin '[p 'q/(2P)'"]+(n+ 2)mI'-

ein '[n 'e/(gP)'t'] - g, e = integer),

p =sr/sq, Q=ss/aI,
1

new Hamiltonian =H + =—
pBt

+ , [I,H] = 0. ——dI BI
dt at zk

(10)

. Therefore, I has eigenstates whose eigenval-
ues are time independent. These eigenstates
and eigenvalues of I can be found by a method
that is completely analogous to the method in-
troduced by Dirac for finding the eigenstates
and eigenvalues of the Hamiltonian of a harmon-
ic oscillator. We first introduce "raising" and
"lowering" operators, al and a, that are defined

In the expression for I the upper or lower signs
are taken according as p —ep 'p'q is greater
than or less than 0. It is seen that Q is a cy-
clic variable in the new Hamiltonian, as it must
be since P is an exact invariant.

Before leaving the classical theory, we. note
that the second-order differential equation for
q, e'd'q/dt'+0'(t)q=0, is of the same form
as the time-independent, one-dimensional Schro-
dinger equation if we let t represent the spa-
tial coordinate and q represent the wave func-

tion. For bound states 0 is imaginary, and
for continuum states 0 is real. Thus, the in-
variant I is a relationship between the wave
function and its first derivative.

Let us now consider the quantum system whose
Hamiltonian is given by Eq. (1), where q and

p are now required to satisfy the commutation
relation

[q, p] =tk.

We also take p to be real, which is possible
if 0' is real. Using the commutation relation
and the equation for p, it is easy to show that
the quantity I which is an invariant of the class-
ical system is also a quantum mechanical con-
stant of the motion. That is, I satisfies

by

a~ =(1/~&[p 'q t(-pP e-p'q)]

a =(1/W~[p 'q+t(pp &p—'q)].

These operators satisfy the relations

[a, at]=5,
aat =I+-,'a. (12)

al0) =0.

With these results the expectation value of the
Hamiltonian in a state In) can be calculated.
The result is

(nIIIIn) =(1/2e)(p '+n'p' +pe")(n +)S2. (15)

It is interesting to note that the expectation
values of 0 are equally spaced at every instant
and that the lowest value is always obtained
with n =o, just as with the harmonic oscillator.

The quantum-mechanical results reduce to
the usual ones for a harmonic oscillator if we
take 0 to be real and constant and take p =0
so that I =&II/O.
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The operator g operating on an eigenstate of
I produces an eigenstate of I whose eigenvalue
is k lower than that of the original eigenstate.
Similarly, at acting on an eigenstate of I increas-
es the eigenvalue by S. Once these properties
are established, the normalizability of the ei-
genstates of I can be used to demonstrate that
the eigenvalues of I are (n+ )2h, where n is
0 or a positive integer. Letting In) denote the
normalized eigenstate of I whose eigenvalue
is (n+-,')h, we can express the relation between
In+1) and In) as

I n + 1)= [(n + 1)h] a~ In).

The condition which determines the state whose
eigenvalue is —,'k is
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