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PRECISE RELATIONS BETWEEN THE SPECTRA OF VECTOR AND AXIAL-VECTOR MESONS

Steven Weinberg*
Department of Physics, University of California, Berkeley, California

(H,eceived 3 January 1967)

Two sum rules are derived, relating moments of the spectral functions of the vector
and axial-vector currents. If it is assumed that the p and A. 1 mesons dominate these
moments, then their masses must be in the ratio mA&/m& = ~2, in very good agreement
with experiment.

If chiral SU(2) |gal SU(2) were an exact symme-
try of the ordinary sort, we should expect the

p meson to be accompanied with an I=1 axial-
vector meson of the same mass. This is cer-
tainly not the case,' the best candidate for the
role of chiral partner of the p is the A1, which
has mA1' =2mp'. However, the recent success-
es of current algebra show that nature does
obey some sort of chiral symmetry, manifest-
ed in the conservation or partial conservation
of currents, and in their commutation relations.
The question thus arises'. What relations are
imposed by current algebra upon the spectra
of the 1+ and 1 mesons?

Our answer is contained in the following the-
orem: Assume that the vector and axial-vec-
tor currents obey the usual commutation rela-
tions, ' with Schwinger terms' which are either
c numbers or, if operators, contain no M = 1

terms. Neglect the pion mass altogether, so
that the axial vector as well as the vector cur-
rents are conserved. ' Then

where E~ is the usual pion-decay amplitude,
and p~ A(p') are the spectral functions of the
vector and axial-vector currents, defined by
the formulas &'

(2)

If we further assume a very weak form of vec-
tor- and axial-vector-meson dominance, i.e.,
that matrix elements of the currents act at high
momenta as if the currents were free 1* fields, 6

then we also have

(4)

Before proving these theorems, let us note
some of their implications. The spectral func-
tions py A(p') are measurable, in principle,
from the cross sections for hadron production
in electron-neutrino collisions. For the pres-
ent, we can estimate pg p') by using the hypoth-
esis of p dominance:

p (Iu') =g '5(p, '-m ').
V p p

Eqs. (1) and (4) now read

f ( 2) -2d 2 2 -2
A p p

f, pA(p')du'=g '. .

m /m = t1 E'm '/g ']-
A p r p p

(8)

Using p dominance and either current algebra'
or the observed p width, we have g '=2F 'rn ',
so Eq. (8) gives

m„/m =v 2
p

in extraordinary agreement with the observedo
masses of the P and Al, for which mA1/mP
= 1.41 + 0.01.

Now to the proof of Eqs. (1) and (4). Define

Hence, if PA(P. ') is sharply peaked about a. point
p, = mA, we must have'
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a three-point function

i-e M (q, p) = fd xd y(T(A (x), A (y), V (0)]) exp[-iq x-ip y].

Our assumptions lead immediately to the following Ward identities:

—,'q M" (q, p) = a (q+p)-a (p),

.'(q+p)—M" (q, p)=& " (q)-& "
(p), (12)

where b, V and bA are the propagators of the vector and axial-vector currents. Multiply (11) with

(q+p)& and (12) with q, and subtract; this gives

(q+p) & (q+p)=q & (q)+p & (p) (13)

Equation (13) holds for all values of q and p, so each term must be the same linear function of its
argument, i.e.,

K 6 (K)=K b, (K)=C K
V Z A

(i4)

with C a constant. Writing this in coordinate space and using current conservation, Eq. (14) becomes

6(x )([V (x), V (O)]) =5(x )([A (x), A (O)]) = —i6 C 8 5 (x),

so our theorem states the equality of the vector and axial-vector Schwinger terms I The vacuum ex-
pectation values in (15) can be evaluated from (2) and (3), with the result that they vanish for u =0,
while for v = 1, 2, 3 they are"

O(x )([V (x), V (0)]) = is 6 (x)f-p (p )p dp, (16)

5(x )([A (x), A (0)]) = —i 5 (x)[E + f, p (p ) p, dp. ]. (i7)

Equation (1) now follows from (15)-(17).
In order to prove Eq. (4) we return to Eq. (11) and now set q& =0. The left-hand side has a one-

pion pole, which is all that survives at q&=0, so Eq. (11) now reads

—,'iZ fd x(v ~T(A (y), V (0)](0)e =a (p) —~ (p), (is)

where ~v~) is a covariantly normalized state
representing a pion of zero energy and isospin
index a. Next let p'- ~. Our assumption' that
the currents behave at infinity like free fields
tells us that the coefficient of g~~ on the left-
hand side behaves like (p') ', while the coef-
ficient of g~~ on the right-hand side approaches

f, [pV(p'—) pA(p')]d p'-

so Eq. (4) is necessary for the consistency of
Eq. (18). Precisely the same reasoning applies
if we app~oxi~ate AV and 4A by sums over

! meson poles, and approximate the left-hand
side of Eq. (18) by a double sum over these
poles.

Our new sum rules (1) and (4) are distinguished
from those of the Adler-Weisberger type, in
that they do not seem to have anything to do
with low-energy theorems, but deal instead
with high-energy behavior and, surprisingly,
with the Schwinger terms. Another distinguish-
ing feature of practical importance is that the
integrals in (1) and (4) receive contributions
only from states of fixed spin and isospin; this
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is presumably why our assumption of p and
A1 saturation works so well.

The methods used here can obviously be ap-
plied to the currents of larger groups, like
SU(3) 8 SU(3), and to the higher n-point func-
tions of the currents.

I am grateful for stimulating conversations
with S. Coleman, D. Geffen, F. Low, and
H. Schnitzer. I also wish to thank the Physics
Department of Harvard University for their
hospitality.
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