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es a, significant correction (of opposite sign).
The relevant numerical results have been dis-
played in Table I.

The best reconciliation of the Desai model"
with current data' on the R,'-R,' mass differ-
ence would appear to indicate values of A. be-
tween -0.1 and —0.15 in the range of acceptable
values'4 of fp'/4v, and a large S-wave, I=0,
scattering length as well. However, one is
likely straining the reliability of the model to
draw so quantitative an inference. At the same
time, one sees that this more realistic mod-
el does not require a large r-r phase shift"
at energies in the neighborhood of the K-me-
son mass as has been suggested. '
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The result of recent measurements of the X~ -X2 mass difference has been used as a
test of various solutions to s-wave mx scattering which are obtained by solving the full
N/D equations with various given forms of the driving force Certain. features of these
solutions with regard to the evaluation of the mass difference are also pointed out.

In view of the fact that several recent mea-
surements of the K,'-K, mass difference have
resolved some of the previous experimental
uncertainties, ' it is of some interest to consid-
er this problem again theoretically. ' ' These
measurements indicate a value of hM =—M(K,o)

-~(&,') =-0.5&, ', where T, is the lifetime
of the K,' meson. In the present work, we use
the K, -K, mass difference as a test of var-
ious solutions to the problem of I= 0, s-wave
nm scattering. We obtain some exact solutions

for the s-wave amplitude by solving the full
N/D equations with various given forms of the
driving force. We then discuss certain features
of these solutions with regard to the evaluation

Since the K,'-K, mass difference is produced
by the weak interactions, the problem reduces
to a calculation of the self-energies of the K,'
and K, mesons due to the weak interactions.
From experiments, the lifetime of K,' is of
the order of 10 "sec while that of K,' is of
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s-4+2 ~~/2

ImZ(s)=c l IF(s)l',
S

(2)

where c is a constant. The form factor itself
is related to the I=O, s-wave rr scattering
amplitude by

F (s) = [D(s)]

where D(s) is the denominator function in the
N/D decomposition of the s-wave vv amplitude.
The mass difference, &M, is given by

27,6M = -ReZ(M2) ImZ(M2), (4)

where M is the mass of either the Ky or the
meson.

the order of 10 7 sec. In addition, the lepton-
ic decay rates for the K, and E,' are known
to be negligible as compared with the two-pi-
on decay mode of the K, which is predominant-
ly in the I =0 state, according to the lhII = 2

rule. Thus the mass difference may be due
primarily to the self-energy of the K,', aris-
ing from the two-pion state with I=O.

The self-energy operator for the K,' meson,
Z(s), is assumed to obey an unsubtracted dis-
persion relation'~':

1 ",ImZ(s')
7T ~ 4g2 s —s

From unitarity, ImZ(s) is related to the K, wv

form factor F(s) by the equation

In the present note, we determine &M from
the above equations by using some exact solu-
tions to the problem of r~ scattering. These
solutions are obtained from the once-subtract-
ed full N/D equations, in which we take as the
driving forces the exchange of the p meson
and the exchange of either an I= 0, s-wave res-
onance or an I=0, s-wave nonresonant ampli-
tude, characterized by a particular value of
the scattering length and represented by the
effective-range formula. We demand that these
solutions be approximately self-consistent,
in the sense that an output resonance have ap-
proximately the same parameters as the as-
sumed input resonance or that a nonresonant
solution be characterized by the same scatter-
ing length as the nonresonant exchange ampli-
tude. Because of the exchange of the vector
meson, a cutoff in the N/D equations is nec-
essary.

It should be noted that the integral for Z(s)
in Eq. (1) is convergent, when the N/D solutions
to s-wave 7t'r scattering are used in its evalu-
ation. However, several cutoffs are used in
the integral in order to determine the relative
contributions to ~ from the various regions
of integration. We find that about 90% of b.M

comes from the low-energy region of the inte-
gration below 1 GeV, as is illustrated in Ta-
bles I and II. This aspect is quite satisfactory
in a low-energy calculation which puts empha-
sis on the nearby singularities of the S matrix.

Table I. Values of the X~ -E2 mass difference, for several values of the self-consistent scattering length and

for an exchanged p meson with a width of 90 MeV and a width of 128 MeV. Ro is chosen to be 0. The corresponding
values of the conventional pion-pion coupling constant, A, , -+~cot5(M ), and 5(M ) are also presented. A cutoff of
66' is used in the N/D equation. Two values of the cutoff A are used in the evaluation of Z(s).

Ip
{rIev) ao A =66p2 A = 1000p2 —

2 cot6(M )

6(M )
(deg)

90
90
90
90
90
90
90

128
128
128
128
128
128
128
128

1.0
0.5
0.2

-0.2
-0.3
—0.4
—0.5

1.0
0.5
0.2

—0.2
—0.3

0 4
—0.5
—0.6

0.400
0.163

—0.024
-0.350
-0.457
—0.583
—0.733

0.170
-0.034
—0.195
-0.459
—0.547
-0.653
—0.782
—0.943

0.169
0.118
0.057

-0.185
—0.317
—0.514
—0.843

0.445
0.414
0.372
0.146
0.020

-0.164
—0.460
—1.036

0.154
0.103
0.043

-0.203
—0.341
-0.554
-0.942

0.437
0.407
0.366
0.142
0.016

—0.169
—0.470
—1.072

-0.356
—0.438
-0.562
-1.889
—9.953

2.720
1.131

-0.122
—0.144
—0.175
—0.415
-0.682
—1.757

3.369
0.871

55
49
42
15
3

-10
—24

76
74
71
50
36
16
—9

—30
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Table II. Values of the E& -E2 mass difference for several s-wave, I =0 resonances of mass M~ but with the0 0

same input width 90 MeV. For M~ -550 MeV, the s-wave amplitude is self-consistent in mass only. The p param-
eters used are a width of 90 MeV and a mass of 769 MeV. bM does not depend on the values of the cutoff A used to
evaluate Z(s) for A~264p2. A cutoff of 264@, is used in the N/D equations as well as in Z(s).

Mg
(MeV) ao —

2 cot6(M )

5(M')
(deg)

395
550
575
592
655

-0.159
-0.540
—0.562
—0.579
-0.605

-0.500
-0.855
-0.886
-0.905
-0.955

1.25
—0.02
—0.30
—0.54
-1.35

0.222
-0.500
—2.034
11.773
1.060

—66

14
—2

—25

In Table I, we present the results of our cal-
culations for the case of the nonresonant s-wave
amplitude. We see that, in order to obtain the
value &M =-0.57, ', we require a negative
value of the I=0, s-wave scattering length;
the phase shift for this solution is negative in
the low-energy region and becomes positive
at higher energies, with a value of 0'+ 10' around
the energy of the K-meson mass (497 MeV).
We also observe from these solutions that a
positive value of scattering length leads to a
positive value for &I and a phase shift at the
K mass of around 30 to 70 . A similar feature
was also observed in the work of Barger and
Kazese in which they assumed various forms
for the m~ phase shift.

In the case of a resonant s-wave amplitude,
we obtain a self-consistent resonance with a
mass less than or equal to 400 MeV. 7 Although
it is possible to get the resonance with a self-
consistent mass only up to about 700 MeV, the

output width is larger than the input width for
values of the resonant mass greater than 550
MeV, by a factor as large as, say, 5 for MR
= 655 MeV. We present the results in Table
II including those of the resonant s-wave solu-
tions with a self-consistent mass only. We

note, as has been observed previously, ' that
mass values of the mw resonance below (above)
the K mass produce positive (negative) values
for 4M. We notice that the phase shift at the
K mass depends sensitively on the output mass
of the s-wave resonance.

We have also performed the calculations by
including the exchange of an I= 2, s-wave, non-
resonant amplitude, again represented by the
effective-range formula with a, = -0.06 and R,
= 0. The results are essentially unchanged by
the presence of the I = 2, s-wave exchange.
In addition, the results are also insensitive

to Rl with tRII ~0.5.
There are certain features of the solutions

which we wish to stress. The dominant contri-
bution to the Born term arises from the exchange
of the p meson and, furthermore, this force
is extremely strong, as evidenced by the fact
that many (unacceptable) solutions to the s-wave
amplitude exhibit either a bound state or a ghost
state. ' This point has been observed by other
authors" too. On this account the behavior of
the N function follows the general character
of the p-exchange Born term. Both of these
functions in the low-energy region are mono-

tonie increasing with negative second deriva-
tive and both have a zero in the vicinity of the

physical threshold; the zero of the p-exchange
Born term occurs at s =-m&'/2+ 2lL', while

the zero of the full amplitude occurs closer
to or actually in the physical region. We illus-
trate these points for a typical case in the graph
of Fig. 1, in which we present the total Born
term, the Born term for p exchange alone,
and the N function. In all cases, we find from
our solutions that the N function has a detailed
structure. This is in contrast to the situation
in which the N function is set equal to a. constant
and the D function is chosen to contain the de-
sired character of the amplitude. s

It has been pointed out that, by considering
the analytic properties of the function [N(s)D(s)]
one obtains the equation'

1 1,[1/D(s')] Im[1/N(s')]
iV(s)D (s) s' —s

where I- represents the left-hand cut of the
amplitude. From Eq. (5) one immediately has
for the K, -K, mass difference

hMv, =-2 cot5(M')+correction term due
to left-hand integr al,
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in the physical region. Thus, we feel that a
calculation in which the N function is taken sim-

ply as constant, or, more generally, in which

the correction terms in Eq. (6), both for the

integral along the left-hand eut and for possi-
ble zeros in Nor D, are ignored, is apt to yield
misleading results.

We would like to thank Dr. T. N. Truong for
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puting Laboratory at the U. S. Naval Ordnance
Laboratory for their assistance.

FIG. 1. Plot of the total Born term B(s), the Born
term for p exchange alone g&(s), and N function N(s),
for an amplitude with p exchange (Ip

= 90 MeV) and the
exchange of a nonresonant I=0, s-wave amplitude,
characterized by the scattering length ap = 0.4. Por-
tions of B(s) and N(s) below s = 0 represent their real
parts only. The unit p, =1 is used.

where &(s) is the phase shift of the I=0, s-wave,
n~ scattering amplitude. Equation (5) is val-
id as it stands only if N and D have no zeros',
zeros of N and D contribute as poles to Eq.
(5) and must therefore be included in the cor-
rection term in the evaluation of AM of Eq. (6).

We remark that our evaluation of &M, eith-
er by calculating the self-energy Z(s) direct-
ly from the integral of Eq. (I), or by calculat-
ing Z(s) from Eq. (5) with all correction terms
included, gives the same numerical results.
In Tables I and II, we include the value of
——,cot5(M') in order to illustrate the effect of
these correction terms. It is interesting to
notice from Tables I and II that —2 cot5(M2)
alone can give a misleadingly attractive result
for the mass difference. In particular, Table
I shows that for solutions with a positive scat-
tering length —2cot6(M') has not only the cor-
rect sign but also a reasonable magnitude of
the mass difference.

If the N function is indeed constant, Eq. (6)
is correct with no correction term. However,
our solutions show that the N function is not
constant but rather has a characteristic behav-
ior, and in particular, it has a zero near or
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