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FIG. 2. Experimental and calculated SDW?3 ratios of
coincidence rates versus angle. Normalization of the
ratios is arbitrary.

work, with the objective of reducing the var-
ious backgrounds, is in progress.
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This report presents some evidences indi-
cating a possible fluid-solid phase transition
for a two-dimensionally infinite hard-square
“lattice gas.” The pair interaction between
molecules is an infinite repulsion due to the
finite geometrical size of molecules such that
the nearest and second-nearest neighbors of
a site occupied by the center of a molecule
cannot be occupied by other molecules (see
the shaded area in the inset of Fig. 1).

Recently, Kramers and Wannier’s matrix
method has been used rather extensively to
investigate occurrence of an order-disorder
transition on the square lattice which occurs
when the interaction is limited to nearest-neigh-
bor exclusion.!»* Bellemans and Nigam® ap-
plied it also to square-lattice systems with
interactions extending up to third neighbors.
With second-neighbor exclusion, their studies
on semi-infinite strips (M X ) with width M
ranging from 2 to 12 led to no definite conclu-
sions regarding a thermodynamic phase tran-
sition for the limiting « X« system, although
a first-order phase transition seemed to be
ruled out.

In an attempt to determine the location and

nature of this transition, therefore, we made
similar studies with width extending up to M
=18 with periodic boundaries. The following
thermodynamic variables are calculated: the
reduced pressure P* [=P/(kT); the lattice con-
stant is taken to be the unit of length, % =Boltz-
mann’s constant; 7 =absolute temperature},
the reduced density p* [=p/p,; p, = the density
at close packing =0.25], dp/du* [i*=the reduced
chemical potential= p/(kT)], and d?o/du*®. In
the calculation, the quantity u=z/(1+2) [z

= activity =exp(u*)] is used as an independent
variable. In this way, the interval (0, «) for

z is mapped onto a finite interval (0, 1) for «.
Furthermore, equal increments in « give ap-
proximately equal increments in the density
except at the high-density end.

These thermodynamic variables are expressed
exactly in terms of the eigenvalues A; and the
corresponding eigenvectors ¥; of a particular
submatrix B of the symmetric Kramers-Wan-
nier matrix A which is required in computing
the thermodynamic properties of a finite M
XN system. The use of the CDC 6600 for this
stage of the calculation gives an accuracy of
9 digits or better for all the thermodynamic
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FIG. 1. Eigenvalue ratios (\;>[\,|>A3) of the matrix
B; the largest eigenvalue A gives the thermodynamic
properties of an 18X hard-square lattice with the
first- and the second-neighbor exclusion (see the inset).

variables reported. In this way errors aris-
ing from numerical differentiations are avoid-
ed.* The submatrix B belongs to the one-di-
mensional symmetric representation of the
dihedral group of order 2M, and its largest
eigenvalue is also the largest eigenvalue X,

of A. The knowledge of X, only is sufficient

for computing the pressure for an M x«~ system:
P*=M"11n,.

Furthermore, the knowledge of the eigenval-
ues and eigenvectors enables one to study the
long-range correlations. In particular, long-
range order occurs if at least two eigenvalues
are “asymptotically” degenerate,?® i.e.,

Lim x./x !M;EO for i>1.
M = i1

For a semi-infinite system, the largest eigen-
value is always a nondegenerate and positive
number for all positive, finite values of activ-
ity. However, the limiting behavior of Ixi/A1|M
can be studied as a function of both z and M

to provide still another way of locating the on-
set of long-range order.

In Fig. 1, these ratios are shown for two ei-
genvalues, 2,(<0) and 2,(>0), with the next two
largest moduli for the submatrix B for the case
M =18. In the case of the hard-square lattice
with nearest-neighbor exclusion, the eigenval-

6

ue with the second largest modulus belongs
to the submatrix for the one-dimensional anti-
symmetric representation.? In the present
case, however, the eigenvalues with the two
largest moduli come from the submatrix B for
the symmetric representation. The behavior
of the eigenvalue spectrum of the present mod-
el resembles that of the square lattice with
nearest-neighbor exclusion,? which itself is
similar to the Ising model.® In particular, the
transition point (u =u;) appears to be charac-
terized by an infinite degree of asymptotic de-
generacy, while the disordered (# <u;) and the
ordered (u >u;) states are characterized, re-
spectively, by 0 and 2 degrees of asymptotic
degeneracy in the eigenvalues with largest mod-
uli. However, the two hard-square models
behave differently in the following two ways.
Firstly, an infinite number of eigenvalues for
an o X gsystem are identically zero in the pres-
ent model (for example, 110 out of the 209 ei-
genvalues in the case M =18), while no X;’s
become zero for # >0 in the case of nearest-
neighbor exclusion. Except A, and ,, the ra-
tios )\i/kl for the nonzero eigenvalues of the
present model approach 2—%2 at close packing
for any M (rather than 0 as was the case for
the nearest-neighbor exclusions). The loca-
tion and magnitude of the maximum in (AS/AI)M
vary as the width of an M X~ system changes
in the manner shown in Table I. From these
data, the limiting value,
lim ()\3/A1)maxM’

M =~
is likely to be unity. Noting that (xs/,) should
approach 2_M/ 2 at close packing, u; will, there-
fore, lie close to 0.99. For u >u;, long-range
order will set in, because

M
lim (A,/X,)
M=w

Table I. Variation of the location and magnitude of
the maximum in (\3/A as the width of an M x* sys-
tem changes.

M 10xu 102(g/A 1) g M 1M
6 9.9316 4.9160
8 9.8931 3.0859

10 9.8843 2.4489

12 9.8856 2.1681

14 9.8900 2.0347

16 9.8952 1.9756

18 9.9003 1.9605
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Table II. Thermodynamic variables for M X hard-square lattice systems and the ratios for the eigenvalues hav-
ing the first three largest moduli obtained at the points where (d%p/du*?) exhibits a maximum and a minimum.

M 1o 10p* P* 10%dp/du*  10%%/dp*® 100, 1005
(@ /dpu*®) 1 ax 8  9.6039 8.7810  0.87533 1.8908 —0.38747 4.7908 0.8865
10 9.7134  8.9309  0.94416 1.7871 ~0.26085 5.2713 1.1527
12 9.7741  9.0343  0.99574 1.7120 —-0.158 00 5.6777 1.3999
14  9.8111  9.1072  1.03500 1.6511 —-0.076 83 5.9997 1.6206
16  9.8357  9.1613  1.06595 1.5971 —0.017 32 6.2564 1.8174
18  9.855(3)2 9.2113  1.09402 1.5473(3) +0.020(1) 6.5432 2.0265
(@ /du*®) 0 6  9.8522  9.5155  1.11956 1.1121 —0.742 94 8.2969 1.7065
8 9.8858  9.5765  1.16842 1.0989 —0.906 57 8.7735 1.8748
10  9.8989  9.5855  1.19032 1.1262 —1.045 44 9.0064 1.9779
12 9.9068  9.5822 1.205 27 1.1516 —1.14968 9.1496 2.0725
14  9.9126  9.5762  1.21765 1.1664 -1.21999 9.2476 2.1665
16 9.9173  9.5706 1.22879 1.1693 —-1.26036 9.3201 2.2605
18  9.9212(1) 9.5659  1.23885 1.1648(3) —1.277(1) 9.3744 2.3562

29 855(3)=9.855+0.003. See Ref. 4.

apparently does not vanish.

Next, the nature of a thermodynamic phase
transition which may be associated with the
occurrence of long-range order is investigated.
We found that there occurs a maximum followed
immediately by a minimum in the quantity d%p/
dp*® for u near u;. Table II tabulates the ther-
modynamic variables, as functions of M along
the two trajectories: (i) (@%p/du*®)yax and
(ii) (@®p/du*®) i, In Fig. 2(a) the quantity d*p/
dp*? is plotted as a function of both # and M.
For large M, both Fig. 2(a) and Table II indi-
cate that the difference A(d?p/du*?) [= (d%0/
du*z)max—(dzp/du*z)min] of the two extrema
grows; however, the separation Aul=u,);,
—4max) diminishes. In Fig. 2(b), these differ-
ences are plotted as a function of inverse pow-
ers of M. The difference A(d%p/du*?) appears
to level off when plotted against either M ™!
or (InM)~!, Although a stronger continuous
transition, as was observed in the case of the
nearest-neighbor exculsion, cannot be entire-
ly ruled out, the extrapolation of the above re-
sults indicates that there may be a third-or-
der phase transition with a discontinuous jump
in d®p/dp*® at u =u;, and that dp/du* (which
is proportional to the compressibility) exhib-
its a cusp at u =uy.

The above conclusion is based on an assump-
tion that the thermodynamic quantities for larg-
er systems (M >20) are similar in behavior to
the cases for M <18 in the neighborhood of the
transition point. The analysis of the data ob-
tained in the present work indicates that the
thermodynamic variables converge regularly
for # <0.95 (p*<0.84). In fact, the grand ca-

nonical partition function for an M x« system
reproduces correctly the first M -1 fugacity
(b7) and virial (Bj) coefficients of the pressure
for an « x« system.? Unlike the lattice gas
with the nearest-neighbor exclusion, however,
the present model does not possess a well-de-
fined sublattice structure. For example, even
at the density of close packing, there are con-
figurations with molecules occupying sites along
a column of an M X system which can be ro-
tated by one lattice site without affecting mol-
ecules occupying the adjacent columns. This
type of freedom contributes an additional term,
In2/(2M), to P/RT at high density. This term
is the next significant part of the difference
between P/ET and the dominant term, %lnz,
for high density. In fact, Bellemans and Ni-
gam® showed that P/kT -7 Inz for an M x sys-
tem and an « x« system have different expan-
sion parameters for large z, the former being
z~! and the latter being z %2, and that the z ™!
expansion for a semi-infinite system breaks
down as M becomes infinite. Further clarifi-
cation of this point comes from considering
the eigenvalues of B for M <18. For large z,

1
A~ ZzzM/z[

1saz Lies ‘]
and L
)\2~—222M/2[1 vaz Lo -1,

while the other nonzero A;’s behave as A; ~zM/2
[+1 +AZT 24 ]. In the thermodynamic lim-

it for an M xM system, the contributions by

the latter eigenvalues [there are asymptotical-
ly (1.618)M of them] to the pressure, there-
fore, dominate at large z, although none of these

7



VoLUME 18, NUMBER 1

PHYSICAL REVIEW LETTERS

2 JANUARY 1967

T T T
M=18—
0 M=16 \
M=14 Ut
-0.002-M=12—
-0.004—— M=10 -
(::L M=8
©-0.006— —
~N
QU
o
©_0.008|- -
' (a)
—o.0l0]- _
-0.012— —
Uy
| | 1
096 097 098 099 100
u
0.03
o
(b)
0.02 _
o
0.0l —
0 [ l
M-1.5:18-15 [2-15 8-1.5
L | L |
M1t 18! 1271 g

FIG. 2. (a) Plot of d%0/du*® vs u for Mx = systems of
hard-square lattices M=8,+++, 18. (b) The differ-
ences (Umin—%max) of the position of the extrema of
d%0/du*? observed in (a) are plotted against M—15 a5
circles; the differences (@%/du*?) , —@*/dp*? .
are plotted against M1, as triangles.
eigenvalues becomes asymptotically degener-
ate to A,. The nonuniform convergence of the
pressure for an M X« gsystem to that of an «

X gystem may alter the location as well as

the nature of the predicted transition. However,
systems with relatively small M (<18) may still
furnish enough information to establish a trend
for the differences such as #y,jn—Umax and
@?p/dpu*2)ax— @30 /A *?) % in the neighbor -
hood of the transition point. Under this assump-
tion, we obtain the following values for thermo-
dynamic variables at the transition point: from
(@p/d p*?) 0 data,

u, =0.995+0.02 (or ut*=5.3i0.5),

Pt* =1.4+0.2,
(dp/du*)t =0.010+0.003,
(dzp/du*z)max =0.0016+0.0003;
from (d%p /du"‘z)min data,

(dzp/du*2)mm =-0.0134+0.002,

Ag/\,=[~(4.43£0.09)/(M1InM)] for M>> 20;
from both sets of data,

pt*=0.95310.002,
2 d *2 - dz *2
@p/dy ) max p/du ) min

=0.0155+0.0005,
X/ Aq = =1 (M~ ),

The value of P/pkT at the transition point
increases from 2.15 to 5.9 as the exclusion
of the hard-square lattice extends from near-
est neighbors to the second neighbors. The
corresponding molecular dynamics value® for
hard disks is 10.13. Likewise, the value of
Bgpy changes from 0.92 to 1.07, while Bgpy
is estimated to be 1.38 for hard disks. How-
ever, the order of transition may change irreg-
ularly as was observed in both the hard-square
lattice'~® and the hard-triangular lattice.” If
the mesh size of the lattice becomes finer and
the shape of molecules on sites is chosen to
approximate shape of hard disks, agreement
in thermodynamic values between the lattice
and hard-disk systems should become closer.?

*This work was performed under the auspices of the
U. S. Atomic Energy Commission.
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